[1] FEEHAN K T, GILROY D W. Is resolution the end of inflammation?[J]. Trends Mol Med, 2019, 25(3): 198-214.[2] TOWNSEND A K, SEWALL K B, LEONARD A S, et al. Infectious disease and cognition in wild populations[J]. Trends Ecol Evol, 2022, 37 (10): 899-910. [3] OKIN D, KAGAN J C. Inflammasomes as regulators of non-infectious disease[J]. Semin Immunol, 2023, 69: 101815. [4] PARK M D, SILVIN A, GINHOUX F, et al. Macrophages in health and disease[J]. Cell, 2022, 185(23): 4259-4279. [5] WYNN T A, CHAWLA A, POLLARD J W. Macrophage biology in development, homeostasis and disease[J]. Nature, 2013, 496(7446): 445-455. [6] KADOMOTO S, IZUMI K, MIZOKAMI A. Macrophage polarity and disease control[J]. Int J Mol Sci, 2021, 23(1): 144. [7] SMIGIEL K S, PARKS W C. Macrophages, wound healing, and fibrosis: recent insights[J]. Curr Rheumatol Rep, 2018, 20(4): 17. [8] LAZAROV T, JUAREZ-CARREÑ;O S, COX N, et al. Physiology and diseases of tissue-resident macrophages[J]. Nature, 2023, 618(7966): 698-707. [9] NOBS S P, KOPF M. Tissue-resident macrophages: guardians of organ homeostasis[J]. Trends Immunol, 2021, 42(6): 495-507. [10] 肺泡蛋白沉积症共识专家组, 中国罕见病联盟呼吸病学分会, 中华医学会呼吸病学分会间质性肺疾病学组. 重组人粒细胞-巨噬细胞集落刺激因子雾化吸入治疗自身免疫性肺泡蛋白沉积症的专家共识(2022年版)[J]. 中华结核和呼吸杂志, 2022, 45(9): 865-871. [11] KAWANE K, FUKUYAMA H, KONDOH G, et al. Requirement of DNase II for definitive erythropoiesis in the mouse fetal liver[J]. Science, 2001, 292(5521): 1546-1549. [12] PENG Y, ZHOU M X, YANG H, et al. Regulatory mechanism of M1/M2 macrophage polarization in the development of autoimmune diseases[J]. Mediators Inflamm, 2023, 2023: 8821610. [13] ORECCHIONI M, GHOSHEH Y, PRAMOD A B, et al. Macrophage polarization: different gene signatures in M1(LPS+) vs. classically and M2 (LPS-) vs. alternatively activated macrophages[J]. Front Immunol, 2019, 10: 1084. [14] YAO Y L, XU X H, JIN L P. Macrophage polarization in physiological and pathological pregnancy[J]. Front Immunol, 2019, 10: 792. [15] CHEN Y N, HU M R, WANG L, et al. Macrophage M1/M2 polarization [J]. Eur J Pharmacol, 2020, 877: 173090. [16] VAN DEN BOSSCHE J, BAARDMAN J, OTTO N A, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages[J]. Cell Rep, 2016, 17(3): 684-696. [17] VOISIN B, NADELLA V, DOEBEL T, et al. Macrophage-mediated extracellular matrix remodeling controls host Staphylococcus aureus susceptibility in the skin[J]. Immunity, 2023, 56(7): 1561-1577.e9. [18] LI K, LV L, SHAO D D, et al. Engineering nanopatterned structures to orchestrate macrophage phenotype by cell shape[J]. J Funct Biomater, 2022, 13(1): 31. [19] JAIN N, VOGEL V. Spatial confinement downsizes the inflammatory response of macrophages[J]. Nat Mater, 2018, 17(12): 1134-1144. [20] MCWHORTER F Y, WANG T T, NGUYEN P, et al. Modulation of macrophage phenotype by cell shape[J]. Proc Natl Acad Sci U S A, 2013, 110(43): 17253-17258. [21] WEST A P, BRODSKY I E, RAHNER C, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS [J]. Nature, 2011, 472(7344): 476-480. [22] CAI S S, ZHAO M Y, ZHOU B, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction[J]. J Clin Invest, 2023, 133(4): e159498. [23] YU W H, WANG X, ZHAO J Z, et al. Stat2-Drp1 mediated mitochondrial mass increase is necessary for pro-inflammatory differentiation of macrophages[J]. Redox Biol, 2020, 37: 101761. [24] WEIGERT A, VON KNETHEN A, FUHRMANN D, et al. Redoxsignals and macrophage biology[J]. Mol Aspects Med, 2018, 63: 70-87. [25] GRIFFITHS H R, GAO D, PARARASA C. Redox regulation in metabolic programming and inflammation[J]. Redox Biol, 2017, 12: 50-57. [26] VIOLA A, MUNARI F, SÁNCHEZ-RODRÍGUEZ R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10: 1462. [27] O’NEILL L A J, ARTYOMOV M N. Itaconate: the poster child of metabolic reprogramming in macrophage function[J]. Nat Rev Immunol, 2019, 19(5): 273-281. [28] RYAN D G, O’NEILL L A J. Krebs cycle reborn in macrophage immunometabolism[J]. Annu Rev Immunol, 2020, 38: 289-313. [29] ZHOU R B, YAZDI A S, MENU P, et al. A role for mitochondria in NLRP3 inflammasome activation[J]. Nature, 2011, 469(7329): 221-225. [30] BIDAULT G, VIRTUE S, PETKEVICIUS K, et al. SREBP1-induced fatty acid synthesis depletes macrophages antioxidant defences to promote their alternative activation[J]. Nat Metab, 2021, 3(9): 1150-1162. [31] YAN J W, HORNG T. Lipid metabolism in regulation of macrophage functions[J]. Trends Cell Biol, 2020, 30(12): 979-989. [32] TANNAHILL G M, CURTIS A M, ADAMIK J, et al. Succinate is an inflammatory signal that induces IL-1β through HIF-1α[J]. Nature, 2013, 496(7444): 238-242. [33] FUHRMANN D C, WITTIG I, BRÜNE B. TMEM126B deficiency reduces mitochondrial SDH oxidation by LPS, attenuating HIF-1α stabilization and IL-1β expression[J]. Redox Biol, 2019, 20: 204-216. [34] 赵亚明, 杨邱娴, 左玲峰, 等. 饱和与不饱和脂肪酸对巨噬细胞炎症状态的影响[J]. 基因组学与应用生物学, 2021, 40(S3): 3364-3371. [35] SEFIK E, QU R H, JUNQUEIRA C, et al. Inflammasome activation in infected macrophages drives COVID-19 pathology[J]. Nature, 2022, 606(7914): 585-593. [36] REN C, YAO R Q, ZHANG H, et al. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression[J]. J Neuroinflammation, 2020, 17(1): 14. [37] CHOUSTERMAN B G, SWIRSKI F K, WEBER G F. Cytokine storm and sepsis disease pathogenesis[J]. Semin Immunopathol, 2017, 39(5): 517-528. [38] YANG S, ZHAO M, JIA S J. Macrophage: key player in the pathogenesis of autoimmune diseases[J]. Front Immunol, 2023, 14: 1080310. [39] GERASIMOVA E V, POPKOVA T V, GERASIMOVA D A, et al. Macrophage dysfunction in autoimmune rheumatic diseases and atherosclerosis[J]. Int J Mol Sci, 2022, 23(9): 4513. [40] BOUTET M A, COURTIES G, NERVIANI A, et al. Novel insights into macrophage diversity in rheumatoid arthritis synovium[J]. Autoimmun Rev, 2021, 20(3): 102758. [41] PAN X H, ZHU Q, PAN L L, et al. Macrophage immunometabolism in inflammatory bowel diseases: from pathogenesis to therapy[J]. Pharmacol Ther, 2022, 238: 108176. [42] WCULEK S K, DUNPHY G, HERAS-MURILLO I, et al. Metabolism of tissue macrophages in homeostasis and pathology[J]. Cell Mol Immunol, 2022, 19(3): 384-408. [43] TABAS I, BORNFELDT K E. Intracellular and intercellular aspects of macrophage immunometabolism in atherosclerosis[J]. Circ Res, 2020, 126(9): 1209-1227. [44] BIJNEN M, JOSEFS T, CUIJPERS I, et al. Adipose tissue macrophages induce hepatic neutrophil recruitment and macrophage accumulation in mice[J]. Gut, 2018, 67(7): 1317-1327. [45] WILLENBORG S, SANIN D E, JAIS A, et al. Mitochondrial metabolism coordinates stage-specific repair processes in macrophages during wound healing[J]. Cell Metab, 2021, 33(12): 2398-2414.e9. [46] SHARIFIAGHDAM M, SHAABANI E, FARIDI-MAJIDI R, et al. Macrophages as a therapeutic target to promote diabetic wound healing [J]. Mol Ther, 2022, 30(9): 2891-2908. [47] MA R Y, BLACK A, QIAN B Z. Macrophage diversity in cancer revisited in the era of single-cell omics[J]. Trends Immunol, 2022, 43(7): 546-563. [48] MANTOVANI A, ALLAVENA P, MARCHESI F, et al. Macrophages as tools and targets in cancer therapy[J]. Nat Rev Drug Discov, 2022, 21 (11): 799-820. [49] 皮定南, 莫碧文. M2型巨噬细胞在肺纤维化中的相关研究进展[J]. 中国临床新医学, 2023, 16(3): 291-294. [50] 罗朦莎, 张莺莺, 吕坤. 巨噬细胞极化在过敏性哮喘中的作用[J]. 国际免疫学杂志, 2020, 43(1): 78-82. [51] CANESSO M C, VIEIRA A T, CASTRO T B, et al. Skin wound healing is accelerated and scarless in the absence of commensal microbiota[J]. J Immunol, 2014, 193(10): 5171-5180. [52] TACKE F. Targeting hepatic macrophages to treat liver diseases[J]. J Hepatol, 2017, 66(6): 1300-1312. [53] FANG F, XIAO C, LI C L, et al. Tuning macrophages for atherosclerosis treatment[J]. Regen Biomater, 2023, 10: rbac103. [54] ANDERSON N R, MINUTOLO N G, GILL S, et al. Macrophage-based approaches for cancer immunotherapy[J]. Cancer Res, 2021, 81(5): 1201-1208. [55] 肖锋, 肖静文, 张海燕, 等. 肝细胞癌组织中M2型肿瘤相关巨噬细胞浸润的临床意义[J]. 中华消化杂志, 2023, 43(5): 327-332. [56] PAN K, FARRUKH H, CHITTEPU V C S R, et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy[J]. J Exp Clin Cancer Res, 2022, 41(1): 119. [57] HOOFTMAN A, PEACE C G, RYAN D G, et al. Macrophage fumarate hydratase restrains mtRNA-mediated interferon production[J]. Nature, 2023, 615(7952): 490-498. [58] NA Y R, STAKENBORG M, SEOK S H, et al. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(9): 531-543. [59] ZHANG R Z, BRACCI P M, AZHIR A, et al. Macrophage-targeted sodium chlorite (NP001) slows progression of amyotrophic lateral sclerosis (ALS) through regulation of microbial translocation[J]. Biomedicines, 2022, 10(11): 2907. [60] JAYME T S, LEUNG G, WANG A, et al. Human interleukin-4-treated regulatory macrophages promote epithelial wound healing and reduce colitis in a mouse model[J]. Sci Adv, 2020, 6(23): 4376. |