[1] ALCEDO K P, BOWSER J L, SNIDER N T. The elegant complexity of mammalian ecto-5'-nucleotidase (CD73)[J]. Trends Cell Biol, 2021, 31 (10): 829-842. [2] BOREA P A, GESSI S, MERIGHI S, et al. Pharmacology of adenosine receptors: the state of the art[J]. Physiol Rev, 2018, 98(3): 1591-1625. [3] BACH N, WINZER R, TOLOSA E, et al. The clinical significance of CD73 in cancer[J]. Int J Mol Sci, 2023, 24(14): 11759. [4] GIATROMANOLAKI A, KOUROUPI M, POULILIOU S, et al. Ectonucleotidase CD73 and CD39 expression in non-small cell lung cancer relates to hypoxia and immunosuppressive pathways[J]. Life Sci, 2020, 259: 118389. [5] JIA W Q, ZHOU T C, DAI J W, et al. CD73 regulates hepatic stellate cells activation and proliferation through Wnt/β-catenin signaling pathway[J]. Eur J Pharmacol, 2021, 890: 173667. [6] TERP M G, GAMMELGAARD O L, VEVER H, et al. Sustained compensatory p38 MAPK signaling following treatment with MAPK inhibitors induces the immunosuppressive protein CD73 in cancer: combined targeting could improve outcomes[J]. Mol Oncol, 2021, 15 (12): 3299-3316. [7] CHEN X G, WU C, ZHONG J, et al. Tumorigenesis and progression As A consequence of hypoxic TME: a prospective view upon breast cancer therapeutic targets[J]. Exp Cell Res, 2020, 395(2): 112192. [8] LAI Y P, KUO L C, LIN B R, et al. CD28 engagement inhibits CD73-mediated regulatory activity of CD8 + T cells[J]. Commun Biol, 2021, 4(1): 595. [9] SCHNEIDER E, WINZER R, RISSIEK A, et al. CD73-mediated adenosine production by CD8 T cell-derived extracellular vesicles constitutes an intrinsic mechanism of immune suppression[J]. Nat Commun, 2021, 12(1): 5911. [10] TU E, MCGLINCHEY K, WANG J X, et al. Anti-PD-L1 and anti-CD73 combination therapy promotes T cell response to EGFRmutated NSCLC[J]. JCI Insight, 2022, 7(3): e142843. [11] FU Z Y, CHEN S Q, ZHU Y M, et al. Proteolytic regulation of CD73 by TRIM21 orchestrates tumor immunogenicity[J]. Sci Adv, 2023, 9(1): eadd6626. [12] WU H L, GONG Y, JI P, et al. Targeting nucleotide metabolism: a promising approach to enhance cancer immunotherapy[J]. J Hematol Oncol, 2022, 15(1): 45. [13] ADAM T, MATHES A, ISAYEV O, et al. In vivo immunological effects of CD73 deficiency[J]. Cell Physiol Biochem, 2019, 52(5): 1192-1202. [14] LI C X, JIANG P, WEI S H, et al. Regulatory T cells in tumor microenvironment: new mechanisms, potential therapeutic strategies and future prospects[J]. Mol Cancer, 2020, 19(1): 116. [15] LEONE R D, SUN I M, OH M H, et al. Inhibition of the adenosine A2a receptor modulates expression of T cell coinhibitory receptors and improves effector function for enhanced checkpoint blockade and ACT in murine cancer models[J]. Cancer Immunol Immunother, 2018, 67(8): 1271-1284. [16] YOUNG A, NGIOW S F, GAO Y L, et al. A2AR adenosine signaling suppresses natural killer cell maturation in the tumor microenvironment [J]. Cancer Res, 2018, 78(4): 1003-1016. [17] XIA C L, YIN S H, TO K K W, et al. CD39/CD73/A2AR pathway and cancer immunotherapy[J]. Mol Cancer, 2023, 22(1): 44. [18] NEO S Y, YANG Y, RECORD J, et al. CD73 immune checkpoint defines regulatory NK cells within the tumor microenvironment[J]. J Clin Invest, 2020, 130(3): 1185-1198. [19] CHAMBERS A M, LUPO K B, WANG J, et al. Engineered natural killer cells impede the immunometabolic CD73-adenosine axis in solid tumors[J]. Elife, 2022, 11: e73699. [20] MURPHY P S, WANG J, BHAGWAT S P, et al. CD73 regulates anti-inflammatory signaling between apoptotic cells and endotoxinconditioned tissue macrophages[J]. Cell Death Differ, 2017, 24(3): 559-570. [21] XU S M, WANG C Y, YANG L G, et al. Targeting immune checkpoints on tumor-associated macrophages in tumor immunotherapy[J]. Front Immunol, 2023, 14: 1199631. [22] MONTALBÁN DEL BARRIO I, PENSKI C, SCHLAHSA L, et al. Adenosine-generating ovarian cancer cells attract myeloid cells which differentiate into adenosine-generating tumor associated macrophages - a self-amplifying, CD39- and CD73-dependent mechanism for tumor immune escape[J]. J Immunother Cancer, 2016, 4: 49. [23] SILVA-VILCHES C, RING S, MAHNKE K. ATP and its metabolite adenosine as regulators of dendritic cell activity[J]. Front Immunol, 2018, 9: 2581. [24] PLEBANEK M P, STURDIVANT M, DEVITO N C, et al. Role of dendritic cell metabolic reprogramming in tumor immune evasion[J]. Int Immunol, 2020, 32(7): 485-491. [25] VIGANO S, ALATZOGLOU D, IRVING M, et al. Targeting adenosine in cancer immunotherapy to enhance T-cell function[J]. Front Immunol, 2019, 10: 925. [26] HOFER F, SARIO G D, MUSIU C, et al. A complex metabolic network confers immunosuppressive functions to myeloid-derived suppressor cells (MDSCs) within the tumour microenvironment[J]. Cells, 2021, 10(10): 2700. [27] YANG Y H, LI C Y, LIU T, et al. Myeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulation[J]. Front Immunol, 2020, 11: 1371. [28] LI J Y, WANG L P, CHEN X F, et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancer[J]. Oncoimmunology, 2017, 6(6): e1320011. [29] LI L F, WANG L P, LI J Y, et al. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer[J]. Cancer Res, 2018, 78(7): 1779-1791. [30] SCHNEIDER E, RISSIEK A, WINZER R, et al. Generation and function of non-cell-bound CD73 in inflammation[J]. Front Immunol, 2019, 10: 1729. [31] LU T W, ZHANG Z, ZHANG J J, et al. CD73 in small extracellular vesicles derived from HNSCC defines tumour-associated immunosuppression mediated by macrophages in the microenvironment[J]. J Extracell Vesicles, 2022, 11(5): e12218. [32] GAO Z W, WANG H P, LIN F, et al. CD73 promotes proliferation and migration of human cervical cancer cells independent of its enzyme activity[J]. BMC Cancer, 2017, 17(1): 135. [33] ZHANG M X, DAI X Q, XIANG Y, et al. Advances in CD73 inhibitors for immunotherapy: antibodies, synthetic small molecule compounds, and natural compounds[J]. Eur J Med Chem, 2023, 258: 115546. [34] HERBST R S, MAJEM M, BARLESI F, et al. COAST: an open-label, phase II, multidrug platform study of durvalumab alone or in combination with oleclumab or monalizumab in patients with unresectable, stage III non-small-cell lung cancer[J]. J Clin Oncol, 2022, 40(29): 3383-3393. [35] MANJI G, WAINBERG Z, KRISHNAN K, et al. ARC-8: phase I/Ib study to evaluate safety and tolerability of AB680 + chemotherapy + zimberelimab (AB122) in patients with treatment-naive metastatic pancreatic adenocarcinoma (mPDAC)[J]. J Clin Oncol, 2021, 39: 404. [36] GAMMELGAARD O L, TERP M G, RENN C, et al. Targeting two distinct epitopes on human CD73 with a bispecific antibody improves anticancer activity[J]. J Immunother Cancer, 2022, 10(9): e004554. [37] TOLCHER A W, GORDON M, MAHONEY K M, et al. Phase 1 first-in-human study of dalutrafusp Alfa, an anti-CD73-TGF-β-trap bifunctional antibody, in patients with advanced solid tumors[J]. J Immunother Cancer, 2023, 11(2): e005267. [38] BAO X H, XIE L Y. Targeting purinergic pathway to enhance radiotherapy-induced immunogenic cancer cell death[J]. J Exp Clin Cancer Res, 2022, 41(1): 222.CD73-mediated regulatory activity of CD8 + T cells[J]. Commun Biol, 2021, 4(1): 595. |