Carcinogenesis, Teratogenesis & Mutagenesis ›› 2024, Vol. 36 ›› Issue (3): 237-243.doi: 10.3969/j.issn.1004-616x.2024.03.011
Previous Articles Next Articles
Received:
2023-10-10
Revised:
2024-01-24
Online:
2024-05-30
Published:
2024-06-05
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] 陈浩明, 杭黎华, 余剑芒, 等. 组蛋白甲基转移酶 EZH2 在常见肿瘤中的研究进展[J]. 医学综述, 2021, 27(11): 2145-2150. [2] DUAN R, DU W F, GUO W J. EZH2: a novel target for cancer treatment [J]. J Hematol Oncol, 2020, 13(1): 104. [3] 朱永霞, 施丽红, 陈欣怡, 等. 甲基转移酶 EZH2 在恶性肿瘤发生发展及治疗中的新进展[J]. 肿瘤预防与治疗, 2021, 34(10): 895-903. [4] MARGUERON R, REINBERG D. The Polycomb complex PRC2 and its mark in life[J]. Nature, 2011, 469(7330): 343-349. [5] 汪璐, 任燕, 杨也, 等. EZH2抑制剂tazemetostat治疗恶性肿瘤研究进展[J]. 世界临床药物, 2021, 42(6): 509-513. [6] HE A B, SHEN X H, MA Q, et al. PRC2 directly methylates GATA4 and represses its transcriptional activity[J]. Genes Dev, 2012, 26(1): 37-42. [7] LI J, XI Y, LI W, et al. TRIM28 interacts with EZH2 and SWI/SNF to activate genes that promote mammosphere formation[J]. Oncogene, 2017, 36(21): 2991-3001. [8] ASPROS K G M, CARTER J M, HOSKIN T L, et al. Estrogen receptor beta repurposes EZH2 to suppress oncogenic NFκB/p65 signaling in triple negative breast cancer[J]. NPJ Breast Cancer, 2022, 8(1): 20. [9] BATOOL A, JIN C, LIU Y X. Role of EZH2 in cell lineage determination and relative signaling pathways[J]. Front Biosci (Landmark Ed), 2019, 24(5): 947-960. [10] 窦冬冬, 张易青. EZH2 与乳腺癌及其抑制剂研究[J]. 医学信息,2020, 33(4): 47-50. [11] XIE Y, WANG F, YU J, et al. Silencing of MBD2 and EZH2 inhibits the proliferation of colorectal carcinoma cells by rescuing the expression of SFRP[J]. Oncol Rep, 2021, 46(6): 250. [12] ZHANG Y, LIU F L, ZHENG J D, et al. MAPRE3 as an epigenetic target of EZH2 restricts ovarian cancer proliferation in vitro and in vivo [J]. Exp Cell Res, 2024, 435(1): 113913. [13] DING X Y, QI C, MIN J, et al. Long non-coding RNA HEIH suppresses the expression of TP53 through enhancer of zeste homolog 2 in oesophageal squamous cell carcinoma[J]. J Cell Mol Med, 2020, 24(18): 10551-10559. [14] ZHOU M H, MAO Y H, YU S L, et al. LINC00673 represses CDKN2C and promotes the proliferation of esophageal squamous cell carcinoma cells by EZH2-mediated H3K27 trimethylation[J]. Front Oncol, 2020, 10: 1546. [15] CHENG C L, TSANG F H, WEI L, et al. Bromodomain-containing protein BRPF1 is a therapeutic target for liver cancer[J]. Commun Biol, 2021, 4(1): 888. [16] XUE L Q, YAN H Z, CHEN Y, et al. EZH2 upregulation by ERα induces proliferation and migration of papillary thyroid carcinoma[J]. BMC Cancer, 2019, 19(1): 1094. [17] QIU B Q, LIN X H, YE X D, et al. Long non-coding RNA PSMA3-AS1 promotes malignant phenotypes of esophageal cancer by modulating the miR-101/EZH2 axis as a ceRNA[J]. Aging, 2020, 12(2): 1843-1856. [18] 闵捷, 曹丽莉, 沈彬彬, 等. 长链非编码 RNA XIST 靶向 miR-101/EZH2 对胰腺癌细胞增殖和迁移的影响[J]. 中华胰腺病杂志, 2020, 20(3): 200-206. [19] GAN L, XU M D, HUA R X, et al. The polycomb group protein EZH2 induces epithelial-mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter[J]. J Hematol Oncol, 2018, 11(1): 9. [20] CHEN W K, DI Z, CHEN Z Y, et al. NBPF4 mitigates progression in colorectal cancer through the regulation of EZH2-associated ETFA[J]. J Cell Mol Med, 2021, 25(18): 9038-9050. [21] HUANG C S, HU F Q, SONG D, et al. EZH2-triggered methylation of SMAD3 promotes its activation and tumor metastasis[J]. J Clin Invest, 2022, 132(5): e152394. [22] MA J, ZHANG J, WENG Y C, et al. EZH2-mediated microRNA-139-5p regulates epithelial-mesenchymal transition and lymph node metastasis of pancreatic cancer[J]. Mol Cells, 2018, 41(9): 868-880. [23] 张淑群, 张莹, 杨鑫, 等. EZH2、MMP-2及MMP-9在肝癌侵袭转移中的作用及关系[J]. 西安交通大学学报: 医学版, 2019, 40(6): 947-953. [24] PARK J M, LEE J E, PARK C M, et al. USP44 promotes the tumorigenesis of prostate cancer cells through EZH2 protein stabilization [J]. Mol Cells, 2019, 42(1): 17-27. [25] WANG A B, DAI H S, GONG Y, et al. ANLN-induced EZH2 upregulation promotes pancreatic cancer progression by mediating miR-218-5p/LASP1 signaling axis[J]. J Exp Clin Cancer Res, 2019, 38(1): 347. [26] KONG W Q, LIANG J J, DU J, et al. Long noncoding RNA DLX6-AS1 regulates the growth and aggressiveness of colorectal cancer cells via mediating the miR-26a/EZH2 axis[J]. Cancer Biother Radiopharm, 2021, 36(9): 753-764. [27] 盛泳佳, 韩晨阳, 杨毅, 等. miRNA-124-3p靶向EZH2调控肝癌细胞转移和侵袭能力的机制研究[J]. 浙江医学, 2021, 43(13): 1381-1385, 1399, 1479. [28] 郑华山, 陈成辉, 蔡亲平, 等. MiR-4465调控EZH2的表达抑制胃癌细胞增殖、侵袭和迁移的机制探讨[J]. 现代肿瘤医学, 2022, 30(1): 22-27. [29] JIANG B, YANG B, WANG Q, et al. lncRNA PVT1 promotes hepatitis B virus-positive liver cancer progression by disturbing histone methylation on the c-Myc promoter[J]. Oncol Rep, 2020, 43(2): 718-726. [30] ZHOU X, REN Y, KONG L P, et al. Targeting EZH2 regulates tumor growth and apoptosis through modulating mitochondria dependent cell-death pathway in HNSCC[J]. Oncotarget, 2015, 6(32): 33720-33732. [31] ZHAO M H, HU X M, XU Y N, et al. Targeting of EZH2 inhibits epithelial-mesenchymal transition in head and neck squamous cell carcinoma via regulating the STAT3/VEGFR2 axis[J]. Int J Oncol, 2019, 55(5): 1165-1175. [32] WANG J, YANG X R, LI R J, et al. LncRNA SNHG6 inhibits apoptosis by regulating EZH2 expression via the sponging of miR-101-3p in esophageal squamous-cell carcinoma[J]. Onco Targets Ther, 2020, 13: 11411-11420. [33] 段继惠, 杨磊, 穆红, 等. 抑制 EZH2 表达对宫颈癌细胞凋亡的影响及机制[J]. 山东医药, 2019, 59(11): 1-4. [34] LIU F, HUANG W F, HONG J S, et al. Long noncoding RNA LINC00630 promotes radio-resistance by regulating BEX1 gene methylation in colorectal cancer cells[J]. IUBMB Life, 2020, 72(7): 1404-1414. [35] 王运, 翟展艺, 赵冲, 等. Zeste基因同源蛋白2对非小细胞肺癌吉西他滨耐药性的影响[J]. 中华实验外科杂志, 2020, 37(8): 1481-1484. [36] ZHOU S, PENG J H, XIAO L N, et al. TRIM25 regulates oxaliplatin resistance in colorectal cancer by promoting EZH2 stability[J]. Cell Death Dis, 2021, 12(5): 463. [37] YANG S Z, XU F, ZHOU T, et al. The long non-coding RNA HOTAIR enhances pancreatic cancer resistance to TNF-related apoptosisinducing ligand[J]. J Biol Chem, 2017, 292(25): 10390-10397. [38] ZHOU W, WANG J, MAN W Y, et al. siRNA silencing EZH2 reverses cisplatin-resistance of human non-small cell lung and gastric cancer cells[J]. Asian Pac J Cancer Prev, 2015, 16(6): 2425-2430. [39] 张易, 唐博, 梁锐, 等. RNA 干扰沉默EZH2基因增强人肝癌多药耐药Bel/Fu细胞对氟尿嘧啶的敏感性[J]. 中华普通外科杂志, 2012, 27(8): 660-663. [40] 张越婷, 肖翰希, 孙梁博, 等. 激活miR-101-3p/EZH2通路增敏索拉非尼抗肝癌HepG2细胞的效果[J]. 第三军医大学学报, 2020, 42(22): 2195-2201. [41] 熊义文, 周辉. EZH2在前列腺癌中的研究进展及临床前景[J]. 现代泌尿生殖肿瘤杂志, 2020, 12(3): 189-192. [42] 尚开, 姚启盛, 付圣赐. zeste基因同源蛋白2在肿瘤免疫中的研究进展[J]. 中国比较医学杂志, 2021, 31(8): 128-133. [43] BISSERIER M, WAJAPEYEE N. Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas[J]. Blood, 2018, 131(19): 2125-2137. [44] ZINGG D, ARENAS-RAMIREZ N, SAHIN D, et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy[J]. Cell Rep, 2017, 20(4): 854-867. [45] BÉGUELIN W, TEATER M, MEYDAN C, et al. Mutant EZH2 induces a pre-malignant lymphoma niche by reprogramming the immune response[J]. Cancer Cell, 2020, 37(5): 655-673.e11. [46] HONG J, LEE J H, ZHANG Z, et al. PRC2-mediated epigenetic suppression of type I IFN-STAT2 signaling impairs antitumor immunity in luminal breast cancer[J]. Cancer Res, 2022, 82(24): 4624-4640. [47] ZHOU L Y, MUDIANTO T, MA X J, et al. Targeting EZH2 enhances antigen presentation, antitumor immunity, and circumvents anti-PD-1 resistance in head and neck cancer[J]. Clin Cancer Res, 2020, 26(1): 290-300. [48] FIORAVANTI R, STAZI G, ZWERGEL C, et al. Six years (2012-2018) of researches on catalytic EZH2 inhibitors: the boom of the 2-pyridone compounds[J]. Chem Rec, 2018, 18(12): 1818-1832. [49] KONZE K D, MA A Q, LI F L, et al. An orally bioavailable chemical probe of the Lysine Methyltransferases EZH2 and EZH1[J]. ACS Chem Biol, 2013, 8(6): 1324-1334. [50] HONMA D, KANNO O, WATANABE J, et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor[J]. Cancer Sci, 2017, 108(10): 2069-2078. [51] KIM W, BIRD G H, NEFF T, et al. Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer[J]. Nat Chem Biol, 2013, 9(10): 643-650. [52] KONG X Q, CHEN L M, JIAO L Y, et al. Astemizole arrests the proliferation of cancer cells by disrupting the EZH2-EED interaction of polycomb repressive complex 2[J]. J Med Chem, 2014, 57(22): 9512-9521. [53] CHEN H M, GAO S J, LI J D, et al. Wedelolactone disrupts the interaction of EZH2-EED complex and inhibits PRC2-dependent cancer[J]. Oncotarget, 2015, 6(15): 13049-13059. [54] ZHU M R, DU D H, HU J C, et al. Development of a high-throughput fluorescence polarization assay for the discovery of EZH2-EED interaction inhibitors[J]. Acta Pharmacol Sin, 2018, 39(2): 302-310. [55] QI W, ZHAO K H, GU J, et al. An allosteric PRC2 inhibitor targeting the H3K27me3 binding pocket of EED[J]. Nat Chem Biol, 2017, 13(4): 381-388. [56] WAN L X, XU K X, WEI Y K, et al. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function[J]. Mol Cell, 2018, 69(2): 279-291.e5. [57] WANG X, CAO W, ZHANG J J, et al. A covalently bound inhibitor triggers EZH2 degradation through CHIP-mediated ubiquitination[J]. EMBO J, 2017, 36(9): 1243-1260. [58] LI Z W, HOU P F, FAN D M, et al. The degradation of EZH2 mediated by lncRNA ANCR attenuated the invasion and metastasis of breast cancer[J]. Cell Death Differ, 2017, 24(1): 59-71. [59] ZHANG P J, XIAO Z N, WANG S Y, et al. ZRANB1 is an EZH2 deubiquitinase and a potential therapeutic target in breast cancer[J]. Cell Rep, 2018, 23(3): 823-837. [60] AKPA C A, KLEO K, LENZE D, et al. DZNep-mediated apoptosis in B-cell lymphoma is independent of the lymphoma type, EZH2 mutation status and MYC, BCL2 or BCL6 translocations[J]. PLoS One, 2019, 14(8): e0220681. [61] STAMATO M A, JULI G, ROMEO E, et al. Inhibition of EZH2 triggers the tumor suppressive miR-29b network in multiple myeloma[J]. Oncotarget, 2017, 8(63): 106527-106537. [62] YANG Z Y, YANG F, ZHANG Y L, et al. LncRNA-ANCR down-regulation suppresses invasion and migration of colorectal cancer cells by regulating EZH2 expression[J]. Cancer Biomark, 2017, 18(1): 95-104. |
[1] | ZHANG Kaitai. Aging and malignant tumors—the neglected immunosenescence [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(3): 169-171. |
[2] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(3): 244-247. |
[3] | FU Yongqing, XU Sanhui, ZHAO Yan, WANG Lili. Relationships between SPP1, DEC1, C1QTNF6 and clinicopathologic outcomes of oral squamous cell carcinomas [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(2): 107-111,117. |
[4] | ZHANG Xiaofeng, SONG Fang, ZHU Linzhong. Expression levels of the serum KRT17 protein in patients with locally advanced cervical cancer and its impact on response to neoadjuvant chemotherapy [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(2): 112-117. |
[5] | SHEN Hongmei, LIU Peilong, GU Ping, BEN Liangliang, XU Zhenyu. Diagnostic value of sperm-associated antigen 9 combined with PSAD and fPSA/tPSA ratio for prostate cancer in the PSA grey zone [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(2): 129-132,163. |
[6] | LIU Ruixue, LI Desheng, ZHANG Liwei. Characteristics of serum lipidomics among Kazakhs with esophageal squamous cell carcinomas based on the UPLC-MS/MS method [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(1): 21-28,34. |
[7] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(1): 70-76. |
[8] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2024, 36(1): 80-83. |
[9] | WANG Quankai, JIN Huiping, LI Xinwei, CUI Xufang, GU Yiting, WUHAN Baolier, KANG Tongying, XU Jianning. ALDH3A1 activates GMA-induced malignant transformation of epithelial mesenchymal transition in 16HBE cells via the IL-6/STAT3 signalling pathway [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 405-411. |
[10] | ZHU Wenbiao, QIU bo, XIE Shoucheng, XIAO Huanqin, LIU Gaomin. Expression and clinical significance of transmembrane protein 79 in hepatocellular carcinoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 426-430. |
[11] | XU Jinhua, LI Jingjing, WU Guofeng, REN Yajun, WANG Xue, ZHANG Qianyun. Correlation and prognostic value of serum miR-146a with TNF-α and Treg in patients with non-small cell lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 462-466. |
[12] | YANG Shangying, HUANG Mingxiang, XU Dexin, LIU Jiafu, CHEN Xinfu. Expression of DNAJB4 and association with immune infiltration and prognosis in non-small cell lung cancer [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 467-472. |
[13] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 473-476. |
[14] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 485-488. |
[15] | ZHANG Qi, WU Jing, ZHANG Chenlu. The biological function and mechanism of ribonucleotide reductase subunit M2 in medulloblastoma [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(4): 279-284,291. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||