[1] ZAIMY M A, SAFFARZADEH N, MOHAMMADI A, et al. New methods in the diagnosis of cancer and gene therapy of cancer based on nanoparticles[J]. Cancer Gene Ther, 2017, 24(6):233-243. [2] SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020:GLOBOCAN estimates of incidence and mortality worldwide for 36cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3):209-249. [3] HOJMAN P, GEHL J, CHRISTENSEN J F, et al. Molecular mechanisms linking exercise to cancer prevention and treatment[J]. Cell Metab, 2018, 27(1):10-21. [4] ZENG Y J, XIANG Y F, SHENG R L, et al. Polysaccharide-based nanomedicines for cancer immunotherapy:a review[J]. Bioact Mater,2021, 6(10):3358-3382. [5] CORREIA J H, RODRIGUES J A, PIMENTA S, et al. Photodynamic therapy review:principles, photosensitizers, applications, and future directions[J]. Pharmaceutics, 2021, 13(9):1332. [6] AI F J, WANG N, ZHANG X M, et al. An upconversion nanoplatform with extracellular p H-driven tumor-targeting ability for improved photodynamic therapy[J]. Nanoscale, 2018, 10(9):4432-4441. [7] YU M X, LI F Y, CHEN Z G, et al. Laser scanning up-conversion luminescence microscopy for imaging cells labeled with rare-earth nanophosphors[J]. Anal Chem, 2009, 81(3):930-935. [8] MAHATA M K, DE R, LEE K T. Near-infrared-triggered upconverting nanoparticles for biomedicine applications[J]. Biomedicines, 2021, 9(7):756. [9] SUN Y X, ZHAO D Y, WANG G, et al. Recent progress of hypoxiamodulated multifunctional nanomedicines to enhance photodynamic therapy:opportunities, challenges, and future development[J]. Acta Pharm Sin B, 2020, 10(8):1382-1396. [10] WAN Y L, FU L H, LI C Y, et al. Conquering the hypoxia limitation for photodynamic therapy[J]. Adv Mater, 2021, 33(48):e2103978. [11] KWIATKOWSKI S, KNAP B, PRZYSTUPSKI D, et al. Photodynamic therapy-mechanisms, photosensitizers and combinations[J]. Biomed Pharmacother, 2018, 106:1098-1107. [12] GHEEWALA T, SKWOR T, MUNIRATHINAM G. Photosensitizers in prostate cancer therapy[J]. Oncotarget, 2017, 8(18):30524-30538. [13] ZHANG J, JIANG C S, FIGUEIRÓLONGO J P, et al. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy[J]. Acta Pharm Sin B, 2018, 8(2):137-146. [14] OBAID G, BROEKGAARDEN M, BULIN A L, et al.Photonanomedicine:a convergence of photodynamic therapy and nanotechnology[J]. Nanoscale, 2016, 8(25):12471-12503. [15] MARÍN M J. Recent advances in near infrared upconverting nanomaterials for targeted photodynamic therapy of cancer[J]. Methods Appl Fluoresc, 2022, 10(3):034003. [16] LIANG G F, WANG H J, SHI H, et al. Recent progress in the development of upconversion nanomaterials in bioimaging and disease treatment[J]. J Nanobiotechnology, 2020, 18(1):154. [17] MAI H X, ZHANG Y W, SUN L D, et al. Highly efficient multicolor upconversion emissions and their mechanisms of monodisperse Na YF4:Yb, Er core and core/shell-structured nanocrystals[J]. J Phys Chem C,2007, 111(37):13721-13729. [18] YAO C, WANG P Y, LI X M, et al. Near-infrared-triggered azobenzene-liposome/upconversion nanoparticle hybrid vesicles for remotely controlled drug delivery to overcome cancer multidrug resistance[J]. Adv Mater, 2016, 28(42):9341-9348. [19] CHEN G Y, QIU H L, PRASAD P N, et al. Upconversion nanoparticles:design, nanochemistry, and applications in theranostics[J]. Chem Rev,2014, 114(10):5161-5214. [20] SHANG Y F, HAO S W, LV W Q, et al. Confining excitation energy of Er3+-sensitized upconversion nanoparticles through introducing various energy trapping centers[J]. J Mater Chem C, 2018, 6(15):3869-3875. [21] BORSE S, RAFIQUE R, MURTHY Z V P, et al. Applications of upconversion nanoparticles in analytical and biomedical sciences:a review[J]. Analyst, 2022, 147(14):3155-3179. [22] ZHANG Y L, YAO L, XU D K, et al. Controlled synthesis and luminescence properties of β-NaGdF4:Yb3+, Er3+upconversion nanoparticles[J]. J Cryst Growth, 2018, 491:116-119. [23] CHEN S, WEITEMIER A Z, ZENG X, et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics[J].Science, 2018, 359(6376):679-684. [24] OSUCHOWSKI M, OSUCHOWSKI F, LATOS W, et al. The use of upconversion nanoparticles in prostate cancer photodynamic therapy[J].Life, 2021, 11(4):360. [25] LIU Y J, LU Y Q, YANG X S, et al. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy[J]. Nature,2017, 543(7644):229-233. [26] 田雪莹,杨敏,付阳洋,等.上转换光动力诊疗体系的构建及抗癌研究进展[J].中国稀土学报, 2022, 40(3):395-405. [27] 冯鹏程,王佳玲,李媛媛,等.上转换纳米颗粒在肿瘤诊断与治疗中的研究进展[J].生物加工过程, 2018, 16(5):1-10. [28] ZHANG P, STEELANT W, KUMAR M, et al. Versatile photosensitizers for photodynamic therapy at infrared excitation[J]. J Am Chem Soc,2007, 129(15):4526-4527. [29] WANG C, TAO H Q, CHENG L, et al. Near-infrared light induced in vivo photodynamic therapy of cancer based on upconversion nanoparticles[J]. Biomaterials, 2011, 32(26):6145-6154. [30] HOU Z Y, ZHANG Y X, DENG K R, et al. UV-emitting upconversion-based TiO2photosensitizing nanoplatform:near-infrared light mediated in vivo photodynamic therapy via mitochondria-involved apoptosis pathway[J]. ACS Nano, 2015, 9(3):2584-2599. [31] ZHAO L L, CHOI J, LU Y, et al. NIR photoregulated theranostic system based on hexagonal-phase upconverting nanoparticles for tumor-targeted photodynamic therapy and fluorescence imaging[J]. Nanomaterials, 2020,10(12):2332. [32] XIA L, KONG X G, LIU X M, et al. An upconversion nanoparticle:zinc phthalocyanine based nanophotosensitizer for photodynamic therapy[J].Biomaterials, 2014, 35(13):4146-4156. [33] YANG M, WANG H, WANG Z H, et al. A Nd3+sensitized upconversion nanosystem with dual photosensitizers for improving photodynamic therapy efficacy[J]. Biomater Sci, 2019, 7(4):1686-1695. [34] XU J, XU L G, WANG C Y, et al. Near-infrared-triggered photodynamic therapy with multitasking upconversion nanoparticles in combination with checkpoint blockade for immunotherapy of colorectal cancer[J]. ACS Nano, 2017, 11(5):4463-4474. [35] DING B B, SHAO S, YU C, et al. Large-pore mesoporous-silica-coated upconversion nanoparticles as multifunctional immunoadjuvants with ultrahigh photosensitizer and antigen loading efficiency for improved cancer photodynamic immunotherapy[J]. Adv Mater, 2018, 30(52):e1802479. [36] RAFIQUE R, GUL A R, LEE I G, et al. Photo-induced reactions for disassembling of coloaded photosensitizer and drug molecules from upconversion-mesoporous silica nanoparticles:an effective synergistic cancer therapy[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110:110545. [37] LV Z J, CAO Y, XUE D Z, et al. A multiphoton transition activated iron based metal organic framework for synergistic therapy of photodynamic therapy/chemodynamic therapy/chemotherapy for orthotopic gliomas[J].J Mater Chem B, 2023, 11(5):1100-1107. [38] JI Y, LU F, HU W B, et al. Tandem activated photodynamic and chemotherapy:using pH-Sensitive nanosystems to realize different tumour distributions of photosensitizer/prodrug for amplified combination therapy[J]. Biomaterials, 2019, 219:119393. [39] SHAO Y L, LIU B, DI Z H, et al. Engineering of upconverted metal-organic frameworks for near-infrared light-triggered combinational photodynamic/chemo-/immunotherapy against hypoxic tumors[J]. J Am Chem Soc, 2020, 142(8):3939-3946. [40] LI Q Q, SHI Z Q, ZHANG F, et al. Symphony of nanomaterials and immunotherapy based on the cancer-immunity cycle[J]. Acta Pharm Sin B, 2022, 12(1):107-134. [41] SINDHWANI S, SYED A M, NGAI J, et al. The entry of nanoparticles into solid tumours[J]. Nat Mater, 2020, 19(5):566-575. [42] WU X D, ZHANG Y, WANG Z Q, et al. Near-infrared light-initiated upconversion nanoplatform with tumor microenvironment responsiveness for improved photodynamic therapy[J]. ACS Appl Bio Mater, 2020, 3(9):5813-5823. [43] WEI Z Y, LIU X H, NIU D C, et al. Upconversion nanoparticle-based organosilica-micellar hybrid nanoplatforms for redox-responsive chemotherapy and NIR-mediated photodynamic therapy[J]. ACS Appl Bio Mater, 2020, 3(7):4655-4664. [44] HUANG H Y, BANERJEE S, QIU K Q, et al. Targeted photoredox catalysis in cancer cells[J]. Nat Chem, 2019, 11(11):1041-1048. |