Carcinogenesis, Teratogenesis & Mutagenesis ›› 2023, Vol. 35 ›› Issue (6): 482-484,488.doi: 10.3969/j.issn.1004-616x.2023.06.014
Previous Articles Next Articles
1
Received:
2023-04-28
Revised:
2023-09-08
Online:
2023-11-30
Published:
2023-12-09
CLC Number:
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] KLAASSEN C D, LIU J, DIWAN B A. Metallothionein protection of cadmium toxicity[J]. Toxicol Appl Pharmacol, 2009, 238(3):215-220. [2] THéVENOD F, LEE W K. Toxicology of cadmium and its damage to mammalian organs[J]. Met Ions Life Sci, 2013, 11:415-490. [3] THéVENOD F, LEE W K. Cadmium and cellular signaling cascades:interactions between cell death and survival pathways[J]. Arch Toxicol, 2013, 87(10):1743-1786. [4] HUAT T J, CAMATS-PERNA J, NEWCOMBE E A, et al. Metal toxicity links to Alzheimer's disease and neuroinflammation[J]. J Mol Biol, 2019, 431(9):1843-1868. [5] WAALKES M P. Cadmium carcinogenesis[J]. Mutat Res, 2003, 533(1/2):107-120. [6] YANG H, SHU Y. Cadmium transporters in the kidney and cadmium-induced nephrotoxicity[J]. Int J Mol Sci, 2015, 16(1):1484-1494. [7] NORDBERG G F, FOWLER B A, NORDBERG M. Preface[M]//Handbook on the Toxicology of Metals. Amsterdam:Elsevier, 2007:1-13. [8] SATARUG S, GARRETT S H, SENS M A, et al. Cadmium, environmental exposure, and health outcomes[J]. Environ Health Perspect, 2010, 118(2):182-190. [9] GENCHI G, SINICROPI M S, LAURIA G, et al. The effects of cadmium toxicity[J]. Int J Environ Res Public Health, 2020, 17(11):3782. [10] ZHANG Y M, LIU Q Q, YIN H, et al. Cadmium exposure induces pyroptosis of lymphocytes in carp pronephros and spleens by activating NLRP3[J]. Ecotoxicol Environ Saf, 2020, 202:110903. [11] CHEN Y Y, ZHOU C C, BIAN Y S, et al. Cadmium exposure promotes thyroid pyroptosis and endocrine dysfunction by inhibiting Nrf2/Keap1 signaling[J]. Ecotoxicol Environ Saf, 2023, 249:114376. [12] ZHOU J Z, ZENG L, ZHANG Y W, et al. Cadmium exposure induces pyroptosis in testicular tissue by increasing oxidative stress and activating the AIM2 inflammasome pathway[J]. Sci Total Environ, 2022, 847:157500. [13] FRIEDLANDER A M. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process[J]. J Biol Chem, 1986, 261(16):7123-7126. [14] ZYCHLINSKY A, PREVOST M C, SANSONETTI P J. Shigella flexneri induces apoptosis in infected macrophages[J]. Nature, 1992, 358(6382):167-169. [15] HILBI H, MOSS J E, HERSH D, et al. Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB[J]. J Biol Chem, 1998, 273(49):32895-32900. [16] SHI J J, GAO W Q, SHAO F. Pyroptosis:gasdermin-mediated programmed necrotic cell death[J]. Trends Biochem Sci, 2017, 42(4):245-254. [17] COOKSON B T, BRENNAN M A. Pro-inflammatory programmed cell death[J]. Trends Microbiol, 2001, 9(3):113-114. [18] BALL D P, TAABAZUING C Y, GRISWOLD A R, et al. Caspase-1 interdomain linker cleavage is required for pyroptosis[J]. Life Sci Alliance, 2020, 3(3):e202000664. [19] 林文, 曹珈琪, 张燕, 等. 细胞焦亡的分子机制及研究进展[J]. 中国当代医药, 2020, 27(27):25-29. [20] ITANI S, WATANABE T, NADATANI Y, et al. NLRP3 inflammasome has a protective effect against oxazolone-induced colitis:a possible role in ulcerative colitis[J]. Sci Rep, 2016, 6:39075. [21] CHAUHAN D, VANDE WALLE L, LAMKANFI M. Therapeutic modulation of inflammasome pathways[J]. Immunol Rev, 2020, 297(1):123-138. [22] RüHL S, BROZ P. Regulation of lytic and non-lytic functions of gasdermin pores[J]. J Mol Biol, 2022, 434(4):167246. [23] MATHUR A, HAYWARD J A, MAN S M. Molecular mechanisms of inflammasome signaling[J]. J Leukoc Biol, 2018, 103(2):233-257. [24] FERNANDES-ALNEMRI T, YU J W, DATTA P, et al. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA[J]. Nature, 2009, 458(7237):509-513. [25] ELLIOTT E I, SUTTERWALA F S. Initiation and perpetuation of NLRP3 inflammasome activation and assembly[J]. Immunol Rev, 2015, 265(1):35-52. [26] ZHAO Y, SHAO F. The NAIP-NLRC4 inflammasome in innate immune detection of bacterial flagellin and type III secretion apparatus[J]. Immunol Rev, 2015, 265(1):85-102. [27] XIA X J, WANG X, CHENG Z, et al. The role of pyroptosis in cancer:pro-cancer or pro- "host"-[J]. Cell Death Dis, 2019, 10(9):650. [28] KAYAGAKI N, STOWE I B, LEE B L, et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling[J]. Nature, 2015, 526(7575):666-671. [29] GALLUZZI L, VITALE I, AARONSON S A, et al. Molecular mechanisms of cell death:recommendations of the Nomenclature Committee on Cell Death 2018[J]. Cell Death Differ, 2018, 25(3):486-541. [30] MARTINON F, TSCHOPP J. Inflammatory caspases:linking an intracellular innate immune system to autoinflammatory diseases[J]. Cell, 2004, 117(5):561-574. [31] SARHAN J, LIU B C, MUENDLEIN H I, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection[J]. Proc Natl Acad Sci U S A, 2018, 115(46):E10888-E10897. [32] CHAN F H M, CHEN K W. Analyzing caspase-8-dependent GSDMD cleavage in response to Yersinia infection[J]. Methods Mol Biol, 2023, 2641:115-124. [33] HOU J W, WANG S L, MIAO R, et al. Detection of gasdermin C-mediated cancer cell pyroptosis[J]. Methods Mol Biol, 2023, 2641:135-146. [34] WANG Y P, GAO W Q, SHI X Y, et al. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin[J]. Nature, 2017, 547(7661):99-103. [35] ZHANG C C, LI C G, WANG Y F, et al. Chemotherapeutic paclitaxel and cisplatin differentially induce pyroptosis in A549 lung cancer cells via caspase-3/GSDME activation[J]. Apoptosis, 2019, 24(3/4):312-325. [36] FRANK D, VINCE J E. Pyroptosis versus necroptosis:similarities, differences, and crosstalk[J]. Cell Death Differ, 2019, 26(1):99-114. [37] JAIN S, PLENTER R, JEREMY R, et al. The impact of Caspase-1 deletion on apoptosis and acute kidney injury in a murine transplant model[J]. Cell Signal, 2021, 85:110039. [38] LIU J, QU W, KADIISKA M B. Role of oxidative stress in cadmium toxicity and carcinogenesis[J]. Toxicol Appl Pharmacol, 2009, 238(3):209-214. [39] WANG Y D, FANG J, LEONARD S S, et al. Cadmium inhibits the electron transfer chain and induces reactive oxygen species[J]. Free Radic Biol Med, 2004, 36(11):1434-1443. [40] BROZ P. Inflammasomes:Intracellular detection of extracellular bacteria[J]. Cell Res, 2016, 26(8):859-860. [41] CHEN H Y, LU Y H, CAO Z W, et al. Cadmium induces NLRP3 inflammasome-dependent pyroptosis in vascular endothelial cells[J]. Toxicol Lett, 2016, 246:7-16. [42] WEI Z J, NIE G H, YANG F, et al. Inhibition of ROS/NLRP3/Caspase-1 mediated pyroptosis attenuates cadmium-induced apoptosis in duck renal tubular epithelial cells[J]. Environ Pollut, 2020, 273:115919. [43] XING H Y, LIU Q, HOU Y L, et al. Cadmium mediates pyroptosis of human dermal lymphatic endothelial cells in a NLRP3 inflammasome-dependent manner[J]. J Toxicol Sci, 2022, 47(6):237-247. [44] ZHANG C Y, LIN T J, NIE G H, et al. Cadmium and molybdenum co-induce pyroptosis via ROS/PTEN/PI3K/AKT axis in duck renal tubular epithelial cells[J]. Environ Pollut, 2021, 272:116403. [45] CHU X S, DAI X Y, PU W J, et al. Co-exposure to molybdenum and cadmium triggers pyroptosis and autophagy by PI3K/AKT axis in duck spleens[J]. Environ Toxicol, 2023, 38(3):635-644. [46] HU Z S, NIE G H, LUO J R, et al. Molybdenum and cadmium co-induce pyroptosis via inhibiting Nrf2-mediated antioxidant defense response in the brain of ducks[J]. Biol Trace Elem Res, 2023, 201(2):874-887. [47] CRANE D D, BAULER T J, WEHRLY T D, et al. Mitochondrial ROS potentiates indirect activation of the AIM2 inflammasome[J]. Front Microbiol, 2014, 5:438. [48] XING P C, SHI X, CUI W, et al. Yeast selenium exerts an antioxidant effect by regulating the level of selenoprotein to antagonize Cd-induced pyroptosis of chicken liver[J]. Biol Trace Elem Res, 2022, 200(9):4079-4088. [49] FENG J P, YANG F, WU H S, et al. Selenium protects against cadmium-induced cardiac injury by attenuating programmed cell death via PI3K/AKT/PTEN signaling[J]. Environ Toxicol, 2022, 37(5):1185-1197. [50] BAUERNFEIND F, BARTOK E, RIEGER A, et al. Cutting edge:reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome[J]. J Immunol, 2011, 187(2):613-617. |
[1] | ZHANG Jiuhong, CHEN Xiao, ZHAO Jing, XU Benhong, WU Desheng, LIU Jianjun. Acute and sub-chronic toxicity of tris(1, 3-dichloroisopropyl) phosphate in rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(6): 431-438. |
[2] | TANG Jiao, TAN Jianbin, MAO Lina, ZHANG Zihong, LI Wenli, HU Shuaier, ZHAO Min. Effects of bisphenol S on expression of spermiogenesis genes in C. elegans [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(3): 183-186. |
[3] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2023, 35(3): 231-235,239. |
[4] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(5): 395-399. |
[5] | LI Min, HE Ning, ZHANG Dalong, GUAN Tong, QIAN Zhiyong. Sub-chronic toxicity of polyphenol and polysaccharid extracts from Areca catechu in Wistar rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(4): 307-313,317. |
[6] | TIAN Xiaolin, YANG Lingling, ZHAO Qian, CHOU Yulan, SUN Zilong, NIU Ruiyan, YAN Xiaoyan. Effects of fluoride and arsenic alone and combined exposures on nephrotoxicity and autophagy in offspring rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(3): 169-177. |
[7] | LIU Xiaoning, GENG Qiang, XU Jiangyao, LIN Guimiao, WANG Xiaomei, GUO Suiqun. Cytotoxic effects of CuInS2/ZnS quantum dots on human ovarian granulosa cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(3): 206-212,232. |
[8] | JIANG Xiaoyan, YAN Dong, HE Yingxue, FAN Li, LIANG Chenqing. [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(3): 237-241. |
[9] | LIU Jianxin, MA Yuhong, HAO Weidong. Effects of sub-chronic exposure to cerium nitrate on neurobehavioral functions in SD rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(2): 81-87. |
[10] | LI Xinwei, WANG Quankai, MA Shunpeng, WANG Miao, WUHAN Baolier, GU Yiting, KANG Tongying, XU Jianning. Long non-coding RNA expression analysis and ceRNA regulatory network in glycidyl methacrylate-induced malignant transformation of 16HBE cells [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 1-6. |
[11] | XIA Qiyue, YUE Qianlan, DOU Jiexiong, ZHUANG Siqi, LIU Keliang. Toxicological test of orally administered sodium sulfide in rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 62-66. |
[12] | . [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2022, 34(1): 79-81. |
[13] | LI Hongwei, KONG Deqin, YU Weihua, WU Hao, WANG Zhao, LIU Rui, HAI Chunxu, WANG Xin, LIU Jiangzheng, LI Wenli. Protective effect of oleanolic acid co-treatment on alcohol-induced oxidative damage in gastric mucosa of rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(5): 365-369. |
[14] | WANG Jiamin, LIU Jianxin, MENG Qinghe, HAO Weidong. Sub-chronic exposure to yttrium nitrate on learning and memory functions in female rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(4): 255-261. |
[15] | LI Mei, SU Jiakun, YIN Jingjing, XU Da, QIN Xiujun, AN Quan, CAI Jibao. Effects of 30-day smoke exposure on gene expression profile in hearts of rats [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2021, 33(4): 291-295. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||