[1] BRETT J O, ARJONA M, IKEDA M, et al. Exercise rejuvenates quiescent skeletal muscle stem cells in old mice through restoration of Cyclin D1[J]. Nat Metab, 2020, 2(4):307-317. [2] MONTARRAS D, MORGAN J, COLLINS C, et al. Direct isolation of satellite cells for skeletal muscle regeneration[J]. Science, 2005, 309(5743):2064-2067. [3] 魏笑, 孙茹. 骨骼肌损伤治疗的研究进展[J]. 长春教育学院学报, 2015, 31(22):31-32. [4] DUEWEKE J J, AWAN T M, MENDIAS C L. Regeneration of skeletal muscle after eccentric injury[J]. J Sport Rehabil, 2017, 26(2):171-179. [5] SUN C S, SERRA C, LEE G, et al. Stem cell-based therapies for Duchenne muscular dystrophy[J]. Exp Neurol, 2020, 323:113086. [6] ALARCIN E, BAL——ZTüRK A, AVCI H, et al. Current strategies for the regeneration of skeletal muscle tissue[J]. Int J Mol Sci, 2021, 22(11):5929. [7] LORANT J, SAURY C, SCHLEDER C, et al. Skeletal muscle regenerative potential of human MuStem cells following transplantation into injured mice muscle[J]. Mol Ther, 2018, 26(2):618-633. [8] DUBOIS B, ESCULIER J F. Soft-tissue injuries simply need PEACE and LOVE[J]. Br J Sports Med, 2020, 54(2):72-73. [9] SACCO A, DOYONNAS R, KRAFT P, et al. Self-renewal and expansion of single transplanted muscle stem cells[J]. Nature, 2008, 456(7221):502-506. [10] PéRIé S, TROLLET C, MOULY V, et al. Autologous myoblast transplantation for oculopharyngeal muscular dystrophy:a phase I/IIa clinical study[J]. Mol Ther, 2014, 22(1):219-225. [11] ZHAO M M, TAZUMI A, TAKAYAMA S, et al. Induced fetal human muscle stem cells with high therapeutic potential in a mouse muscular dystrophy model[J]. Stem Cell Reports, 2020, 15(1):80-94. [12] VANDUSEN K W, SYVERUD B C, WILLIAMS M L, et al. Engineered skeletal muscle units for repair of volumetric muscle loss in the tibialis anterior muscle of a rat[J]. Tissue Eng Part A, 2014, 20(21/22):2920-2930. [13] MARTINS A L L, GIORNO L P, JR SANTOS A R. Tissue engineering applied to skeletal muscle:strategies and perspectives[J]. Bioengineering, 2022, 9(12):744. [14] RINALDI F, PERLINGEIRO R C R. Stem cells for skeletal muscle regeneration:therapeutic potential and roadblocks[J]. Transl Res, 2014, 163(4):409-417. [15] ROUGER K, LARCHER T, DUBREIL L, et al. Systemic delivery of allogenic muscle stem cells induces long-term muscle repair and clinical efficacy in Duchenne muscular dystrophy dogs[J]. Am J Pathol, 2011, 179(5):2501-2518. [16] CHEN C L, WEI S Y, CHEN W L, et al. Reconstructing vascular networks promotes the repair of skeletal muscle following volumetric muscle loss by pre-vascularized tissue constructs[J]. J Tissue Eng, 2023, 14:20417314231201231. [17] KLIMCZAK A, ZIMNA A, MALCHER A, et al. Co-transplantation of bone marrow-MSCs and myogenic stem/progenitor cells from adult donors improves muscle function of patients with Duchenne muscular dystrophy[J]. Cells, 2020, 9(5):1119. [18] TROHATOU O, ROUBELAKIS M G. Mesenchymal stem/stromal cells in regenerative medicine:past, present, and future[J]. Cell Reprogram, 2017, 19(4):217-224. [19] SANDONà M, PIETRO L D, ESPOSITO F, et al. Mesenchymal stromal cells and their secretome:new therapeutic perspectives for skeletal muscle regeneration[J]. Front Bioeng Biotechnol, 2021, 9:652970. [20] RODRIGUEZ A M, PISANI D, DECHESNE C A, et al. Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse[J]. J Exp Med, 2005, 201(9):1397-1405. [21] STEINLE H, WEBER M, BEHRING A, et al. Reprogramming of urine-derived renal epithelial cells into iPSCs using srRNA and consecutive differentiation into beating cardiomyocytes[J]. Mol Ther Nucleic Acids, 2019, 17:907-921. [22] IBERITE F, GRUPPIONI E, RICOTTI L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies:perspectives and challenges[J]. NPJ Regen Med, 2022, 7(1):23. [23] FILARETO A, DARABI R, PERLINGEIRO R C R. Engraftment of ES-derived myogenic progenitors in a severe mouse model of muscular dystrophy[J]. J Stem Cell Res Ther, 2012, 10(1):S10-S001. [24] SHIN M K, BANG J S, LEE J E, et al. Generation of skeletal muscle organoids from human pluripotent stem cells to model myogenesis and muscle regeneration[J]. Int J Mol Sci, 2022, 23(9):5108. [25] CHAL J, POURQUIé O. Making muscle:skeletal myogenesis in vivo and in vitro[J]. Development, 2017, 144(12):2104-2122. [26] WANG J, BROER T, CHAVEZ T, et al. Myoblast deactivation within engineered human skeletal muscle creates a transcriptionally heterogeneous population of quiescent satellite-like cells[J]. Biomaterials, 2022, 284:121508. [27] ZHOU S P, HAN L F, WU Z G. A long journey before cycling:regulation of quiescence exit in adult muscle satellite cells[J]. Int J Mol Sci, 2022, 23(3):1748. [28] BRONDOLIN M, HERZOG D, SULTAN S, et al. Migration and differentiation of muscle stem cells are coupled by RhoA signalling during regeneration[J]. Open Biol, 2023, 13(9):230037. [29] COSGROVE B D, GILBERT P M, PORPIGLIA E, et al. Rejuvenation of the muscle stem cell population restores strength to injured aged muscles[J]. Nat Med, 2014, 20(3):255-264. [30] FEIGE P, BRUN C E, RITSO M, et al. Orienting muscle stem cells for regeneration in homeostasis, aging, and disease[J]. Cell Stem Cell, 2018, 23(5):653-664. [31] BUCHANAN S M, PRICE F D, CASTIGLIONI A, et al. Pro-myogenic small molecules revealed by a chemical screen on primary muscle stem cells[J]. Skelet Muscle, 2020, 10(1):28. [32] TROY A, CADWALLADER A B, FEDOROV Y, et al. Coordination of satellite cell activation and self-renewal by Par-complex-dependent asymmetric activation of p38α/β MAPK[J]. Cell Stem Cell, 2012, 11(4):541-553. [33] CHARVILLE G W, CHEUNG T H, YOO B, et al. Ex vivo expansion and in vivo self-renewal of human muscle stem cells[J]. Stem Cell Reports, 2015, 5(4):621-632. [34] BERNET J D, DOLES J D, HALL J K, et al. p38 MAPK signaling underlies a cell-autonomous loss of stem cell self-renewal in skeletal muscle of aged mice[J]. Nat Med, 2014, 20(3):265-271. [35] ARJONA M, GOSHAYESHI A, RODRIGUEZ-MATEO C, et al. Tubastatin A maintains adult skeletal muscle stem cells in a quiescent state exvivo and improves their engraftment ability invivo[J]. Stem Cell Reports, 2022, 17(1):82-95. [36] GIOFTSIDI S, RELAIX F, MOURIKIS P. The Notch signaling network in muscle stem cells during development, homeostasis, and disease[J]. Skelet Muscle, 2022, 12(1):9. [37] BAGHDADI M B, FIRMINO J, SONI K, et al. Notch-induced miR-708 antagonizes satellite cell migration and maintains quiescence[J]. Cell Stem Cell, 2018, 23(6):859-868.e5. [38] GOULAS S, CONDER R, KNOBLICH J A. The Par complex and integrins direct asymmetric cell division in adult intestinal stem cells[J]. Cell Stem Cell, 2012, 11(4):529-540. [39] FIORE P F, BENEDETTI A, SANDONà M, et al. Lack of PKCθ promotes regenerative ability of muscle stem cells in chronic muscle injury[J]. Int J Mol Sci, 2020, 21(3):932. [40] BENEDETTI A, FIORE P F, MADARO L, et al. Targeting PKCθ promotes satellite cell self-renewal[J]. Int J Mol Sci, 2020, 21(7):2419. [41] GILBERT P M, HAVENSTRITE K L, MAGNUSSON K E, et al. Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture[J]. Science, 2010, 329(5995):1078-1081. [42] MADL C M, FLAIG I A, HOLBROOK C A, et al. Biophysical matrix cues from the regenerating niche direct muscle stem cell fate in engineered microenvironments[J]. Biomaterials, 2021, 275:120973. [43] ISHII K, SAKURAI H, SUZUKI N, et al. Recapitulation of extracellular LAMININ environment maintains stemness of satellite cells InVitro[J]. Stem Cell Reports, 2018, 10(2):568-582. [44] BENEDETTI A, CERA G, MEO D D, et al. A novel approach for the isolation and long-term expansion of pure satellite cells based on ice-cold treatment[J]. Skelet Muscle, 2021, 11(1):7. [45] DUGUEZ S, DUDDY W J, GNOCCHI V, et al. Atmospheric oxygen tension slows myoblast proliferation via mitochondrial activation[J]. PLoS One, 2012, 7(8):e43853. [46] LIU W Y, WEN Y F, BI P P, et al. Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation[J]. Development, 2012, 139(16):2857-2865. |