[1] CHU L Y, PENG Y H, WENG X F, et al. Blood-based biomarkers for early detection of esophageal squamous cell carcinoma[J]. World J Gastroenterol, 2020, 26(15):1708-1725. [2] LIU W, XIE L, HE Y H, et al. Large-scale and high-resolution mass spectrometry-based proteomics profiling defines molecular subtypes of esophageal cancer for therapeutic targeting[J]. Nat Commun, 2021, 12(1):4961. [3] SMYTH E C, LAGERGREN J, FITZGERALD R C, et al. Oesophageal cancer[J]. Nat Rev Dis Primers, 2017, 3:17048. [4] BANDLA S, PENNATHUR A, LUKETICH J D, et al. Comparative genomics of esophageal adenocarcinoma and squamous cell carcinoma[J]. Ann Thorac Surg, 2012, 93(4):1101-1106. [5] GUPTA B, KUMAR N. Worldwide incidence, mortality and time trends for cancer of the oesophagus[J]. Eur J Cancer Prev, 2017, 26(2):107-118. [6] RUSTGI A K, EL-SERAG H B. Esophageal carcinoma[J]. N Engl J Med, 2014, 371(26):2499-2509. [7] RAY P, ZHANG D H, ELIAS J A, et al. Cloning of a differentially expressed I kappa B-related protein[J]. J Biol Chem, 1995, 270(18):10680-10685. [8] NORMAN D A, BARTON P J. Isolation, sequence, and chromosomal localisation of the human IkappaBR gene (NFKBIL2)[J]. Ann Hum Genet, 2000, 64(Pt 1):15-23. [9] GUYOMARC'H S, VERNOUX T, TRAAS J, et al. MGOUN3, an Arabidopsis gene with TetratricoPeptide-Repeat-related motifs, regulates meristem cellular organization[J]. J Exp Bot, 2004, 55(397):673-684. [10] SUZUKI T, INAGAKI S, NAKAJIMA S, et al. A novel Arabidopsis gene TONSOKU is required for proper cell arrangement in root and shoot apical meristems[J]. Plant J, 2004, 38(4):673-684. [11] TAKEDA S, TADELE Z, HOFMANN I, et al. BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis[J]. Genes Dev, 2004, 18(7):782-793. [12] DURO E, LUNDIN C, ASK K, et al. Identification of the MMS22L-TONSL complex that promotes homologous recombination[J]. Mol Cell, 2010, 40(4):632-644. [13] CHANG H R, JUNG E, CHO S, et al. Targeting non-oncogene addiction for cancer therapy[J]. Biomolecules, 2021, 11(2):129. [14] YU B, DING Y M, LIAO X F, et al. Overexpression of TONSL might be an independent unfavorable prognostic indicator in hepatocellular carcinoma[J]. Pathol Res Pract, 2019, 215(5):939-945. [15] NGUYEN M H, UEDA K, NAKAMURA Y, et al. Identification of a novel oncogene, MMS22L, involved in lung and esophageal carcinogenesis[J]. Int J Oncol, 2012, 41(4):1285-1296. [16] CUI X B, SHEN Y Y, JIN T T, et al. SLC39A6:a potential target for diagnosis and therapy of esophageal carcinoma[J]. J Transl Med, 2015, 13:321. [17] CERAMI E, GAO J J, DOGRUSOZ U, et al. The cBio cancer genomics portal:an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5):401-404. [18] GAO J J, AKSOY B A, DOGRUSOZ U, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269):pl1. [19] TANG Z F, LI C W, KANG B X, et al. GEPIA:a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1):W98-W102. [20] PIWKO W, OLMA M H, HELD M, et al. RNAi-based screening identifies the Mms22L-Nfkbil2 complex as a novel regulator of DNA replication in human cells[J]. EMBO J, 2010, 29(24):4210-4222. [21] PIWKO W, MLEJNKOVA L J, MUTREJA K, et al. The MMS22L-TONSL heterodimer directly promotes RAD51-dependent recombination upon replication stress[J]. EMBO J, 2016, 35(23):2584-2601. [22] ALLUM W H, STENNING S P, BANCEWICZ J, et al. Long-term results of a randomized trial of surgery with or without preoperative chemotherapy in esophageal cancer[J]. J Clin Oncol, 2009, 27(30):5062-5067. [23] GERTLER R, STEIN H J, LANGER R, et al. Long-term outcome of 2920 patients with cancers of the esophagus and esophagogastric junction:evaluation of the New Union Internationale Contre le Cancer/American Joint Cancer Committee staging system[J]. Ann Surg, 2011, 253(4):689-698. [24] FERLAY J, SHIN H R, BRAY F, et al. Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J]. Int J Cancer, 2010, 127(12):2893-2917. [25] JEMAL A, BRAY F, CENTER M M, et al. Global cancer statistics[J]. CA Cancer J Clin, 2011, 61(2):69-90. [26] PENNATHUR A, GIBSON M K, JOBE B A, et al. Oesophageal carcinoma[J]. Lancet, 2013, 381(9864):400-412. [27] CAMPOS E I, SMITS A H, KANG Y H, et al. Analysis of the histone H3.1 interactome:a suitable chaperone for the right event[J]. Mol Cell, 2015, 60(4):697-709. [28] FENG W, WU H, CHAN L N, et al. The Par-3 NTD adopts a PB1-like structure required for Par-3 oligomerization and membrane localization[J]. EMBO J, 2007, 26(11):2786-2796. [29] HOU Y X, HU J Y, ZHOU L J, et al. Integrative analysis of methylation and copy number variations of prostate adenocarcinoma based on weighted gene co-expression network analysis[J]. Front Oncol, 2021, 11:647253. [30] KHATPE A S, DIRKS R, BHAT-NAKSHATRI P, et al. TONSL is an immortalizing oncogene and a therapeutic target in breast cancer[J]. Cancer Res, 2023, 83(8):1345-1360. [31] LEE H N, HA S, CHOI S, et al. Oncogenic impact of TONSL, a homologous recombination repair protein at the replication fork, in cancer stem cells[J]. Int J Mol Sci, 2023, 24(11):9530. [32] SAREDI G, HUANG H D, HAMMOND C M, et al. H4K20me0 marks post-replicative chromatin and recruits the TONSL-MMS22L DNA repair complex[J]. Nature, 2016, 534(7609):714-718. [33] DAVARINEJAD H, HUANG Y C, MERMAZ B, et al. The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication[J]. Science, 2022, 375(6586):1281-1286. |