[1] NAIR A, YADAV P, BEHL A, et al. Toxic blister agents: chemistry, mode of their action and effective treatment strategies [J]. Chem Biol Interact, 2021, 350: 109654. [2] 罗孝如, 廖斌. 日本遗弃化学武器知多少[J]. 生命与灾害, 2016(10): 18-19. [3] SEZIGEN S, KENAR L. Recent sulfur mustard attacks in Middle East and experience of health professionals[J]. Toxicol Lett, 2020, 320: 52-57. [4] ZHANG H, CHEN Y C, PEI Z P, et al. Protective effects of polydatin against sulfur mustard-induced hepatic injury[J]. Toxicol Appl Pharmacol, 2019, 367: 1-11. [5] 凌嘉伟, 丁嘉欣, 陈曦, 等. 药源性线粒体毒性研究进展[J]. 中国药理学与毒理学杂志, 2017, 31(9): 914-922. [6] WILLEMS P G M, ROSSIGNOL R, DIETEREN C J, et al. Redox homeostasis and mitochondrial dynamics[J]. Cell Metab, 2015, 22(2): 207-218. [7] ZHANG B Y, PAN C Y, FENG C, et al. Role of mitochondrial reactive oxygen species in homeostasis regulation[J]. Redox Rep, 2022, 27(1): 45-52. [8] MOHANTY A, TIWARI-PANDEY R, PANDEY N R. Mitochondria: the indispensable players in innate immunity and guardians of the inflammatory response[J]. J Cell Commun Signal, 2019, 13(3): 303-318. [9] 李洁, 李同辉, 梁改玲. 盐酸氮芥酊降解产物研究[J]. 中国药事, 2020, 34(1): 47-52. [10] 艾多, 徐安琦, 孔德钦, 等. 催化性抗氧化剂AEOL-10150对氮芥诱导小鼠急性肝损伤的保护作用[J]. 癌变·畸变·突变, 2022, 34(1): 40-46, 61. [11] MORROW M R, BATCHULUUN B, WU J H, et al. Inhibition of ATP-citrate lyase improves NASH, liver fibrosis, and dyslipidemia[J]. Cell Metab, 2022, 34(6): 919-936.e8. [12] MCGILL M R, JAESCHKE H. Biomarkers of drug-induced liver injury[J]. Adv Pharmacol, 2019, 85: 221-239. [13] 海春旭, 吴昊, 刘江正. 防化医学现状及未来展望[J]. 空军军医大学学报, 2023: 1-11. [14] 赵晨茜, 徐安琦, 艾多, 等. 线粒体靶向抗氧化剂MitoTEMPO对氮芥诱导BEAS-2B细胞损伤的影响[J]. 癌变·畸变·突变, 2022, 34(3): 161-168. [15] 唐金元, 褚海波. 芥子气致肝脾损伤的研究现状[J]. 实用医药杂志, 2015, 32(2): 110-112. [16] SABNAM S, RIZWAN H, PAL S, et al. CEES-induced ROS accumulation regulates mitochondrial complications and inflammatory response in keratinocytes[J]. Chem Biol Interact, 2020, 321: 109031. [17] 周兴, 李雪梅, 李晓辉. 以线粒体为靶点治疗肝损伤的研究进展[J]. 重庆理工大学学报: 自然科学, 2021, 35(9): 184-193. [18] 刘江正, 宋德心, 马丞飞, 等. 线粒体抗氧化剂MitoQ减轻氮芥诱导小鼠急性肝损伤[J]. 空军军医大学学报, 2022: 1-13. [19] 周景艳, 颜新, 左晓丽. 芥子气中毒所致肝功能损害临床分析[J]. 解放军医学杂志, 2003, 28(12): 1133. [20] SHARMA M, PANT S C, PANT J C, et al. Nitrogen and sulphur mustard induced histopathological observations in mouse visceral organs[J]. J Environ Biol, 2010, 31(6): 891-905. [21] STEINRITZ D, LÜLING R, SIEGERT M, et al. Alkylation of rabbit muscle creatine kinase surface methionine residues inhibits enzyme activity in vitro[J]. Arch Toxicol, 2021, 95(10): 3253-3261. [22] MEYER J N, LEUTHNER T C, LUZ A L. Mitochondrial fusion, fission, and mitochondrial toxicity[J]. Toxicology, 2017, 391: 42-53. [23] RAMACHANDRAN A, UMBAUGH D S, JAESCHKE H. Mitochondrial dynamics in drug-induced liver injury[J]. Livers, 2021, 1(3): 102-115. [24] SANCHIS-GOMAR F, DERBRÉ F. Mitochondrial fission and fusion in human diseases[J]. N Engl J Med, 2014, 370(11): 1073-1074. [25] ZOROVA L D, POPKOV V A, PLOTNIKOV E Y, et al. Mitochondrial membrane potential[J]. Anal Biochem, 2018, 552: 50-59. [26] SUKUMAR M, LIU J, MEHTA G U, et al. Mitochondrial membrane potential identifies cells with enhanced stemness for cellular therapy[J]. Cell Metab, 2016, 23(1): 63-76. [27] LIU S Q, LIU S S, HE B Y, et al. OXPHOS deficiency activates global adaptation pathways to maintain mitochondrial membrane potential[J]. EMBO Rep, 2021, 22(4): e51606. [28] WALLACE K B. Mitochondrial toxicity[J]. Toxicology, 2017, 391: 1. [29] 胡梅琮, 邹玲莉, 黄保军, 等. 胞外ATP在小鼠急性肝损伤中的表达及意义[J]. 检验医学, 2014, 29(8): 838-842. [30] 罗淳. 浅议线粒体呼吸链复合物的组成与功能[J]. 山西农经, 2017(3): 101, 145. |