[1] EMENS L A. Breast cancer immunotherapy:facts and hopes[J]. Clin Cancer Res, 2018, 24(3):511-520. [2] BASU A, RAMAMOORTHI G, JIA Y, et al. Immunotherapy in breast cancer:current status and future directions[J]. Adv Cancer Res, 2019, 143:295-349. [3] SHEIKH-HOSSEINI M, LARIJANI B, GHOLIPOOR KAKROODI Z, et al. Gene therapy as an emerging therapeutic approach to breast cancer:new developments and challenges[J]. Hum Gene Ther, 2021, 32(21/22):1330-1345. [4] 郭智慧, 周庆, 蒋安科, 等. 小干扰RNA技术对沉默乳腺细胞中DEK基因的表达及乳腺癌细胞增殖与凋亡的影响[J]. 中国妇幼保健, 2018, 33(14):3307-3310. [5] 管海涛, 薛兴欢, 王西京, 等. 靶向survivin的siRNA抑制乳腺癌MCF-7细胞增殖并诱导其凋亡[J]. 中华肿瘤杂志, 2006, 28(5):326-330. [6] 周艳, 吴振村, 唐玉红, 等. HLA-E基因多态性及血浆可溶性HLA-E水平与乳腺癌遗传易患性的关系[J]. 细胞与分子免疫学杂志, 2015, 31(4):524-527. [7] 周艳, 吴振村, 程健君, 等. 人类白细胞抗原-E基因多态性与乳腺癌遗传易感性的关系[J]. 肿瘤防治研究, 2015, 42(2):190-193. [8] SZEKELY B, BOSSUYT V, LI X, et al. Immunological differences between primary and metastatic breast cancer[J]. Ann Oncol, 2018, 29(11):2232-2239. [9] KANEVSKIY L, EROKHINA S, KOBYZEVA P, et al. Dimorphism of HLA-E and its disease association[J]. Int J Mol Sci, 2019, 20(21):5496. [10] SHARPE H R, BOWYER G, BRACKENRIDGE S, et al. HLA-E:exploiting pathogen-host interactions for vaccine development[J]. Clin Exp Immunol, 2019, 196(2):167-177. [11] DA SILVA, SILVA T G A, DUARTE R A, et al. Expression of the classical and nonclassical HLA molecules in breast cancer[J]. Int J Breast Cancer, 2013, 2013:250435. [12] DE KRUIJF E M, SAJET A, VAN NES J G H, et al. HLA-E and HLA-G expression in classical HLA class I-negative tumors is of prognostic value for clinical outcome of early breast cancer patients[J]. J Immunol, 2010, 185(12):7452-7459. [13] TALEBIAN YAZDI M, VAN RIET S, VAN SCHADEWIJK A, et al. The positive prognostic effect of stromal CD8+ tumor-infiltrating T cells is restrained by the expression of HLA-E in non-small cell lung carcinoma[J]. Oncotarget, 2016, 7(3):3477-3488. [14] HIRAOKA N, INO Y, HORI S, et al. Expression of classical human leukocyte antigen class I antigens, HLA-E and HLA-G, is adversely prognostic in pancreatic cancer patients[J]. Cancer Sci, 2020, 111(8):3057-3070. [15] HUANG R X, ZHANG D Y, LI F, et al. Loss of Fas expression and high expression of HLA-E promoting the immune escape of early colorectal cancer cells[J]. Oncol Lett, 2017, 13(5):3379-3386. [16] ÖZGÜL ÖZDEMIR R B, OZDEMIR A T, OLTULU F, et al. A comparison of cancer stem cell markers and nonclassical major histocompatibility complex antigens in colorectal tumor and noncancerous tissues[J]. Ann Diagn Pathol, 2016, 25:60-63. [17] SINGH A, TRIVEDI P, JAIN N K. Advances in siRNA delivery in cancer therapy[J]. Artif Cells Nanomed Biotechnol, 2018, 46(2):274-283. [18] LI C F, CAO S, LIU Z, et al. RNAi-mediated downregulation of uPAR synergizes with targeting of HER2 through the ERK pathway in breast cancer cells[J]. Int J Cancer, 2010, 127(7):1507-1516. [19] CHEN Y C, STAMATOYANNOPOULOS G, SONG C Z. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro[J]. Cancer Res, 2003, 63(16):4801-4804. [20] LAPTEVA N, YANG A G, SANDERS D E, et al. CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo[J]. Cancer Gene Ther, 2005, 12(1):84-89. [21] YHEE J Y, SONG S Y, LEE S J. et al. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance[J]. J Control Release, 2015, 198:1-9. |