[1] BURMA S, CHEN B P C, CHEN D J. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity[J]. DNA Repair, 2006, 5(9/10):1042-1048. [2] RODGERS K, MCVEY M. Error-prone repair of DNA double-strand breaks[J]. J Cell Physiol, 2016, 231(1):15-24. [3] BRITTON S, CHANUT P, DELTEIL C, et al. ATM antagonizes NHEJ proteins assembly and DNA-ends synapsis at single-ended DNA double strand breaks[J]. Nucleic Acids Res, 2020, 48(17):9710-9723. [4] ABDISALAAM S, DAVIS A J, CHEN D J, et al. Scanning fluorescence correlation spectroscopy techniques to quantify the kinetics of DNA double strand break repair proteins after γ-irradiation and bleomycin treatment[J]. Nucleic Acids Res, 2013, 42(1):e5. [5] CHANG H H Y, PANNUNZIO N R, ADACHI N, et al. Non-homologous DNA end joining and alternative pathways to double-strand break repair[J]. Nat Rev Mol Cell Biol, 2017, 18(8):495-506. [6] PANNUNZIO N R, WATANABE G, LIEBER M R. Nonhomologous DNA end-joining for repair of DNA double-strand breaks[J]. J Biol Chem, 2018, 293(27):10512-10523. [7] DAVIS A, CHEN D J. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3):130-143. [8] KURIMASA A, KUMANO S, BOUBNOV N V, et al. Requirement for the kinase activity of human DNA-dependent protein kinase catalytic subunit in DNA strand break rejoining[J]. Mol Cell Biol, 1999, 19(5):3877-3884. [9] CHEN S Y, LEES-MILLER J P, HE Y, et al. Structural insights into the role of DNA-PK as a master regulator in NHEJ[J]. GENOME INSTAB DIS, 2021, 2(4):195-210. [10] BARETIC D, MAIA DE OLIVEIRA T, NIESS M, et al. Structural insights into the critical DNA damage sensors DNA-PKcs, ATM and ATR[J]. Prog Biophys Mol Biol, 2019, 147:4-16. [11] SIBANDA B L, CHIRGADZE D Y, ASCHER D B, et al. DNA-PKcs structure suggests an allosteric mechanism modulating DNA double-strand break repair[J]. Science, 2017, 355(6324):520-524. [12] CHAN D W, CHEN B P C, PRITHIVIRAJSINGH S, et al. Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks[J]. Genes Dev, 2002, 16(18):2333-2338. [13] DOUGLAS P, SAPKOTA G P, MORRICE N, et al. Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase[J]. Biochem J, 2002, 368(Pt 1):243-251. [14] DING Q, REDDY Y V R, WANG W, et al. Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair[J]. Mol Cell Biol, 2003, 23(16):5836-5848. [15] CUI X P, YU Y P, GUPTA S, et al. Autophosphorylation of DNA-dependent protein kinase regulates DNA end processing and may also alter double-strand break repair pathway choice[J]. Mol Cell Biol, 2005, 25(24):10842-10852. [16] CISNEROS-AGUIRRE M, LOPEZCOLORADO F W, TSAI L J, et al. The importance of DNAPKcs for blunt DNA end joining is magnified when XLF is weakened[J]. Nat Commun, 2022, 13(1):3662-3679. [17] MEEK K. Activation of DNA-PK by hairpinned DNA ends reveals a stepwise mechanism of kinase activation[J]. Nucleic Acids Res, 2020, 48(16):9098-9108. [18] LEES-MILLER J P, COBBAN A, KATSONIS P, et al. Uncovering DNA-PKcs ancient phylogeny, unique sequence motifs and insights for human disease[J]. Prog Biophys Mol Biol, 2021, 163:87-108. [19] WALKER J R, CORPINA R A, GOLDBERG J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair[J].Nature, 2001, 412(6847):607-614. [20] SHARIF H, LI Y, DONG Y C, et al. Cryo-EM structure of the DNA-PK holoenzyme[J]. Proc Natl Acad Sci USA, 2017, 114(28):7367-7372. [21] YIN X T, LIU M J, TIAN Y, et al. Cryo-EM structure of human DNA-PK holoenzyme[J]. Cell Res, 2017, 27(11):1341-1350. [22] MERKLE D, DOUGLAS P, MOORHEAD G B G, et al. The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation[J]. Biochemistry, 2002, 41(42):12706-12714. [23] CHEN X M, XU X, CHEN Y, et al. Structure of an activated DNA-PK and its implications for NHEJ[J]. Mol Cell, 2021, 81(4):801-810. [24] FALCK J, COATES J, JACKSON S P. Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage[J]. Nature, 2005, 434(7033):605-611. [25] GELL D, JACKSON S P. Mapping of protein-protein interactions within the DNA-dependent protein kinase complex[J]. Nucleic Acids Res, 1999, 27(17):3494-3502. [26] CHEN S Y, LEE L D, NAILA T, et al. Structural basis of long-range to short-range synaptic transition in NHEJ[J]. Nature, 2021, 593(7858):294-298. [27] CHAPLIN A K, HARDWICK S W, LIANG S K, et al. Dimers of DNA-PK create a stage for DNA double-strand break repair[J]. Nat Struct Mol Biol, 2021, 28(1):13-19. [28] MEEK K, DANG V, LEES-MILLER S P. DNA-PK:the means to justify the ends-[J]. Adv Immunol, 2008, 99:33-58. [29] UEMATSU N, WETERINGS E, YANO K I, et al. Autophosphorylation of DNA-PKCS regulates its dynamics at DNA double-strand breaks[J]. J Cell Biol, 2007, 177(2):219-229. [30] LIU L, CHEN X, LI J, et al. Autophosphorylation transforms DNA-PK from protecting to processing DNA ends[J]. Mol Cell, 2022, 82(1):177-189. [31] ZHA S, SHAO Z P, ZHU Y M. The plié by DNA-PK:dancing on DNA[J]. Mol Cell, 2021, 81(4):644-646. [32] GOODARZI A A, YU Y P, RIBALLO E, et al. DNA-PK autophosphorylation facilitates Artemis endonuclease activity[J]. EMBO J, 2006, 25(16):3880-3889. [33] BLOCK W D, YU Y P, MERKLE D, et al. Autophosphorylation-dependent remodeling of the DNA-dependent protein kinase catalytic subunit regulates ligation of DNA ends[J]. Nucleic Acids Res, 2004, 32(14):4351-4357. [34] PAWELCZAK K S, TURCHI J J. A mechanism for DNA-PK activation requiring unique contributions from each strand of a DNA terminus and implications for microhomology-mediated nonhomologous DNA end joining[J]. Nucleic Acids Res, 2008, 36(12):4022-4031. [35] HSU F M, ZHANG S C, CHEN B P C. Role of DNA-dependent protein kinase catalytic subunit in cancer development and treatment[J]. Transl Cancer Res, 2012, 1(1):22-34. [36] BUNTING S F, NUSSENZWEIG A. End-joining, translocations and cancer[J]. Nat Rev Cancer, 2013, 13(7):443-454. [37] WANG X S, SZABO C, QIAN C P, et al. Mutational analysis of thirty-two double-strand DNA break repair genes in breast and pancreatic cancers[J]. Cancer Res, 2008, 68(4):971-975. [38] ZHENG B, MAO J H, LI X Q, et al. Over-expression of DNA-PKcs in renal cell carcinoma regulates mTORC2 activation, HIF-2α expression and cell proliferation[J].Sci Rep, 2016, 6(1):1-11. [39] LI N, MA Y, MA L, et al. microRNA-488-3p sensitizes malignant melanoma cells to cisplatin by targeting PRKDC[J]. Cell Biol Int, 2017, 41(6):622-629. [40] ZHANG Y, WEN G M, WU C A, et al. PRKDC is a prognostic marker for poor survival in gastric cancer patients and regulates DNA damage response[J]. Pathol Res Pract, 2019, 215(8):152509. [41] SUN S F, CHENG S G, ZHU Y X, et al. Identification of PRKDC (Protein Kinase, DNA-Activated, Catalytic Polypeptide) as an essential gene for colorectal cancer (CRCs) cells[J]. Gene, 2016, 584(1):90-96. [42] ZHANG Y, YANG W K, WEN G M, et al. High expression of PRKDC promotes breast cancer cell growth via p38 MAPK signaling and is associated with poor survival[J]. Mol Genet Genomic Med, 2019, 7(11):e908. [43] DAVIDSON D, COULOMBE Y, MARTINEZ-MARIGNAC V L, et al. Irinotecan and DNA-PKcs inhibitors synergize in killing of colon cancer cells[J]. Invest New Drugs, 2012, 30(3):1248-1256. [44] WENGNER A M, SCHOLZ A, HAENDLER B. Targeting DNA damage response in prostate and breast cancer[J]. Int J Mol Sci, 2020, 21(21):8273. [45] DAVYDOV V, HANSEN L A, SHACKELFORD D A. Is DNA repair compromised in Alzheimer--s disease-[J]. Neurobiol Aging, 2003, 24(7):953-968. [46] CARDINALE A, RACANIELLO M, SALADINI S, et al. Sublethal doses of β-amyloid peptide abrogate DNA-dependent protein kinase activity[J]. J Biol Chem, 2012, 287(4):2618-2631. [47] GRUNE T, REINHECKEL T, DAVIES K J. Degradation of oxidized proteins in mammalian cells[J]. FASEB J, 1997, 11(7):526-534. [48] VAN DER BURG M, IJSPEERT H, VERKAIK N S, et al. A DNA-PKcs mutation in a radiosensitive T-B- SCID patient inhibits Artemis activation and nonhomologous end-joining[J]. J Clin Invest, 2009, 119(1):91-98. [49] JU J H, NAURA A S, ERRAMI Y, et al. Phosphorylation of p50 NF-κB at a single serine residue by DNA-dependent protein kinase is critical for VCAM-1 expression upon TNF treatment[J]. J Biol Chem, 2010, 285(52):41152-41160. [50] SELUANOV A, MITTELMAN D, PEREIRA-SMITH O M, et al. DNA end joining becomes less efficient and more error-prone during cellular senescence[J]. Proc Natl Acad Sci USA, 2004, 101(20):7624-7629. |