[1] YANG C C, ZHANG J F, LIAO M R, et al. Folate-mediated one-carbon metabolism:a targeting strategy in cancer therapy[J]. Drug Discov Today, 2021, 26(3):817-825. [2] LIN H, HUANG B, WANG H, et al. MTHFD2 overexpression predicts poor prognosis in renal cell carcinoma and is associated with cell proliferation and vimentin-modulated migration and invasion[J]. Cell Physiol Biochem, 2018, 51(2):991-1000. [3] CHRISTENSEN K E, MACKENZIE R E. Chapter 14 mitochondrial methylenetetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase, and formyltetrahydrofolate synthetases[J]. Vitam Horm, 2008, 79:393-410. [4] ZHAO L N, BJÖRKLUND M, CALDEZ M J, et al. Therapeutic targeting of the mitochondrial one-carbon pathway:perspectives, pitfalls, and potential[J]. Oncogene, 2021, 40(13):2339-2354. [5] TEDESCHI P M, SCOTTO K W, KERRIGAN J, et al. MTHFD2:a new twist?[J]. Oncotarget, 2016, 7(7):7368-7369. [6] NILSSON R, JAIN M, MADHUSUDHAN N, et al. Metabolic enzyme expression highlights a key role for MTHFD2 and the mitochondrial folate pathway in cancer[J]. Nat Commun, 2014, 5:3128. [7] GUSTAFSSON R, JEMTH A S, GUSTAFSSON N M S, et al. Crystal structure of the emerging cancer target MTHFD2 in complex with a substrate-based inhibitor[J]. Cancer Res, 2017, 77(4):937-948. [8] SHIN M, MOMB J, APPLING D R. Human mitochondrial MTHFD2 is a dual redox cofactor-specific methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase[J]. Cancer Metab, 2017, 5(1):11. [9] SHEPPARD N G, JARL L, MAHADESSIAN D, et al. The folate-coupled enzyme MTHFD2 is a nuclear protein and promotes cell proliferation[J]. Sci Rep, 2015, 5:15029. [10] LIU X, LIU S J, PIAO C Y, et al. Non-metabolic function of MTHFD2 activates CDK2 in bladder cancer[J]. Cancer Sci, 2021, 112(12):4909-4919. [11] HUANG J, QIN Y Y, LIN C F, et al. MTHFD2 facilitates breast cancer cell proliferation via the AKT signaling pathway[J]. Exp Ther Med, 2021, 22(1):703. [12] YU C, YANG L H, CAI M S, et al. Down-regulation of MTHFD2 inhibits NSCLC progression by suppressing cycle-related genes[J]. J Cell Mol Med, 2020, 24(2):1568-1577. [13] LI Q T, YANG F, SHI X, et al. MTHFD2 promotes ovarian cancer growth and metastasis via activation of the STAT3 signaling pathway[J]. FEBS Open Bio, 2021, 11(10):2845-2857. [14] WEI Y M, LIU P F, LI Q, et al. The effect of MTHFD2 on the proliferation and migration of colorectal cancer cell lines[J]. Onco Targets Ther, 2019, 12:6361-6370. [15] KOUFARIS C, NILSSON R. Protein interaction and functional data indicate MTHFD2 involvement in RNA processing and translation[J]. Cancer Metab, 2018, 6:12. [16] PIKMAN Y, PUISSANT A, ALEXE G, et al. Targeting MTHFD2 in acute myeloid leukemia[J]. J Exp Med, 2016, 213(7):1285-1306. [17] SHANG M, YANG H J, YANG R, et al. The folate cycle enzyme MTHFD2 induces cancer immune evasion through PD-L1 up-regulation[J]. Nat Commun, 2021, 12:1940. [18] ZHU Z Y, LEUNG G K K. More than a metabolic enzyme:MTHFD2 as a novel target for anticancer therapy?[J]. Front Oncol, 2020, 10:658. [19] LEHTINEN L, KETOLA K, MÄKELÄ R, et al. High-throughput RNAi screening for novel modulators of vimentin expression identifies MTHFD2 as a regulator of breast cancer cell migration and invasion[J]. Oncotarget, 2013, 4(1):48-63. [20] WU S, CAI W S, SHI Z X, et al. Knockdown of MTHFD2 inhibits proliferation and migration of nasopharyngeal carcinoma cells through the ERK signaling pathway[J]. Biochem Biophys Res Commun, 2022, 614:47-55. [21] LIU X C, HUANG Y, JIANG C L, et al. Methylenetetrahydrofolate dehydrogenase 2 overexpression is associated with tumor aggressiveness and poor prognosis in hepatocellular carcinoma[J]. Dig Liver Dis, 2016, 48(8):953-960. [22] BRABLETZ S, SCHUHWERK H, BRABLETZ T, et al. Dynamic EMT:a multi-tool for tumor progression[J]. EMBO J, 2021, 40(18):e108647. [23] SHI Y F, XU Y M, YAO J C, et al. MTHFD2 promotes tumorigenesis and metastasis in lung adenocarcinoma by regulating AKT/GSK-3β/β-catenin signalling[J]. J Cell Mol Med, 2021, 25(14):7013-7027. [24] HITZEL J, LEE E, ZHANG Y, et al. Oxidized phospholipids regulate amino acid metabolism through MTHFD2 to facilitate nucleotide release in endothelial cells[J]. Nat Commun, 2018, 9:2292. [25] BHAT S M, BADIGER V A, VASISHTA S, et al. 3D tumor angiogenesis models:recent advances and challenges[J]. J Cancer Res Clin Oncol, 2021, 147(12):3477-3494. [26] D'ARCY M S. Cell death:a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biol Int, 2019, 43(6):582-592. [27] LEE J, CHEN X X, WANG Y M, et al. A novel oral inhibitor for one-carbon metabolism and checkpoint kinase 1 inhibitor as a rational combination treatment for breast cancer[J]. Biochem Biophys Res Commun, 2021, 584:7-14. [28] JU H Q, LU Y X, CHEN D L, et al. Modulation of redox homeostasis by inhibition of MTHFD2 in colorectal cancer:mechanisms and therapeutic implications[J]. J Natl Cancer Inst, 2018, 111(6):584-596. |