[1] MARTELLI M, FERRERI A J M, AGOSTINELLI C, et al.Diffuse large B-cell lymphoma[J].Crit Rev Oncol, 2013, 87(2):146-171. [2] ZHANG J, GRUBOR V, LOVE C L, et al.Genetic heterogeneity of diffuse large B-cell lymphoma[J].PNAS, 2013, 110(4):1398-1403. [3] KYROLLOS D G, REID B, DICK K, et al.RPmirDIP:Reciprocal perspective improves miRNA targeting prediction[J].Sci Rep, 2020, 10(1):11770. [4] OHMOTO A, FUJI S.Histological transformation in malignant lymphoma:a possible role of PET/CT and circulating tumor DNA as noninvasive diagnostic tools[J].Expert Rev Hematol, 2020, 13(1):23-30. [5] CHANTADA G, LAM C G, HOWARD S C.Optimizing outcomes for children with non-Hodgkin lymphoma in lowand middle-income countries by early correct diagnosis, reducing toxic death and preventing abandonment[J].Br J Haematol, 2019, 185(6):1125-1135. [6] TANG Z F, LI C W, KANG B X, et al.GEPIA:a web server for cancer and normal gene expression profiling and interactive analyses[J].Nucleic Acids Res, 2017, 45(1):98-102. [7] KROH E M, PARKIN R K, MITCHELL P S, et al.Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR)[J].Methods, 2010, 50(4):298-301. [8] HARHAJ E W, GIAM C Z.NF-κB signaling mechanisms in HTLV-1-induced adult T-cell leukemia/lymphoma[J].FEBS J, 2018, 285(18):3324-3336. [9] RIGOGLIO N N, RABELO A C S, BORGHESI J, et al.The tumor microenvironment:focus on extracellular matrix[J].Adv Exp Med Biol, 2020, 1245:1-38. [10] SIMON DAVIS D A, PARISH C R.Heparan sulfate:a ubiquitous glycosaminoglycan with multiple roles in immunity[J].Front Immunol, 2013, 4:470. [11] GAO H X, LI S J, NIU J, et al.TCL1 as a hub protein associated with the PI3K/AKT signaling pathway in diffuse large B-cell lymphoma based on proteomics methods[J].Pathol Res Pract, 2020, 216(2):152799. [12] WANG W G, CUI W L, WANG L, et al.Loss of B-cell receptor expression defines a subset of diffuse large B-cell lymphoma characterized by silent BCR/PI3K/AKT signaling and a germinal center phenotype displaying low-risk clinicopathologic features[J].Am J Surg Pathol, 2015, 39(7):902-911. [13] WANG J F, XU-MONETTE Z Y, JABBAR K J, et al.AKT hyperactivation and the potential of AKT-targeted therapy in diffuse large B-cell lymphoma[J].Am J Pathol, 2017, 187(8):1700-1716. [14] PEIRIS M N, MEYER A N, NELSON K N, et al.Oncogenic fusion protein BCR-FGFR1 requires the breakpoint cluster region-mediated oligomerization and chaperonin Hsp90 for activation[J].Haematologica, 2020, 105(5):1262-1273. [15] MUSGROVE E A, CALDON C E, BARRACLOUGH J, et al.Cyclin D as a therapeutic target in cancer[J].Nat Rev Cancer, 2011, 11(8):558-572. [16] GAVIRAGHI M, RABELLINO A, ANDOLFO A, et al.Direct stimulation of ERBB2 highlights a novel cytostatic signaling pathway driven by the receptor Thr 701 phosphorylation[J].Sci Rep, 2020, 10(1):16906. [17] ROSENWALD A, BENS S, ADVANI R, et al.Prognostic significance of MYC rearrangement and translocation partner in diffuse large B-cell lymphoma:a study by the Lunenburg lymphoma biomarker consortium[J].J Clin Oncol, 2019, 37(35):3359-3368. [18] LI Y K, ZHANG F Q, YANG D H.Comprehensive assessment and meta-analysis of the association between CTNNB1 polymorphisms and cancer risk[J].Biosci Rep, 2017, 37(6):BSR20171121. [19] KIM S, JEONG S.Mutation hotspots in the β-catenin gene:lessons from the human cancer genome databases[J].Mol Cells, 2019, 42(1):8-16. [20] VOROPAEVA E N, POSPELOVA T I, VOEVODA M I, et al.Clinical aspects of TP53 gene inactivation in diffuse large Bcell lymphoma[J].BMC Med Genomics, 2019, 12(Suppl 2):35. [21] WANG R, XU J L, XU J, et al.miR-326/Sp1/KLF3:a novel regulatory axis in lung cancer progression[J].Cell Prolif, 2019, 52(2):e12551. [22] PAN S M, LIU Y Q, LIU Q Q, et al.HOTAIR/miR-326/FUT6 axis facilitates colorectal cancer progression through regulating fucosylation of CD44 via PI3K/AKT/mTOR pathway[J].Biochim Biophys Acta Mol Cell Res, 2019, 1866(5):750-760. [23] LU Y Y, DENG X B, XIAO G H, et al.circ_0001730 promotes proliferation and invasion via the miR-326/Wnt7B axis in glioma cells[J].Epigenomics, 2019, 11(11):1335-1352. [24] CHEN X X, XU M, XU X N, et al.METTL14 suppresses CRC progression via regulating N6-methyladenosine-dependent primary miR-375 processing[J].Mol Ther, 2020, 28(2):599-612. [25] TANG W, LI G S, LI J D, et al.The role of upregulated miR-375 expression in breast cancer:an in vitro and in silico study[J].Pathol Res Pract, 2020, 216(1):152754. [26] GAN T Q, CHEN W J, QIN H, et al.Clinical value and prospective pathway signaling of microRNA-375 in lung adenocarcinoma:a study based on the cancer genome atlas (TCGA), gene expression omnibus (GEO) and bioinformatics analysis[J].Med Sci Monit, 2017, 23:2453-2464. [27] KOUTOVA L, STERBOVA M, PAZOURKOVA E, et al.The impact of standard chemotherapy on miRNA signature in plasma in AML patients[J].Leuk Res, 2015, 39(12):1389-1395. [28] BI L X, ZHOU B, LI H Y, et al.A novel miR-375-HOXB3-CDCA3/DNMT3B regulatory circuitry contributes to leukemogenesis in acute myeloid leukemia[J].BMC Cancer, 2018, 18(1):182. |