[1] WEN D G, ZHANG F C, ZHANG E Y, et al. Arsenic, fluoride and iodine in groundwater of China[J]. J Geochem Explor,2013, 135:1-21. [2] JIA Y F, XI B D, JIANG Y H, et al. Distribution, formation and human-induced evolution of geogenic contaminated groundwater in China:a review[J]. Sci Total Environ, 2018, 643:967-993. [3] PI K F, WANG Y X, XIE X J, et al. Hydrogeochemistry of co-occurring geogenic arsenic, fluoride and iodine in groundwater at Datong Basin, Northern China[J]. J Hazard Mater, 2015, 300:652-661. [4] 孙洪娜,姜宇婷,赵丽军,等.我国地方病学“十四五”学科发展战略[J].中华地方病学杂志, 2021, 40(7):517-523. [5] DHARMARATNE R W. Exploring the role of excess fluoride in chronic kidney disease:a review[J]. Hum Exp Toxicol, 2019, 38(3):269-279. [6] ADAMEK E, PAWŁOWSKA-GÓRAL K, BOBER K. In vitro and in vivo effects of fluoride ions on enzyme activity[J]. Ann Acad Med Stetin, 2005, 51(2):69-85. [7] QUADRI J A, SARWAR S, SINHA A, et al. Fluorideassociated ultrastructural changes and apoptosis in human renal tubule:a pilot study[J]. Hum Exp Toxicol, 2018, 37(11):1199-1206. [8] ZUO H, CHEN L, KONG M, et al. Toxic effects of fluoride on organisms[J]. Life Sci, 2018, 198:18-24. [9] HSU L I, HSIEH F I, WANG Y H, et al. Arsenic exposure from drinking water and the incidence of CKD in low to moderate exposed areas of Taiwan:a 14-year prospective study[J]. Am J Kidney Dis, 2017, 70(6):787-797. [10] KRAJEWSKI A K, JIMENEZ M P, RAPPAZZO K M, et al.Aggregated cumulative County arsenic in drinking water and associations with bladder, colorectal, and kidney cancers,accounting for population served[J]. J Expo Sci Environ Epidemiol, 2021, 31(6):979-989. [11] 刘华锋,杨俊伟.细胞自噬与肾脏疾病研究中国专家共识[J].中国病理生理杂志, 2021, 37(10):1876-1887. [12] SMITH A H, MARSHALL G, LIAW J, et al. Mortality in young adults following in utero and childhood exposure to arsenic in drinking water[J]. Environ Health Perspect, 2012, 120(11):1527-1531. [13] BOLT H M, HENGSTLER J G. Contemporary trends in toxicological research on arsenic[J]. Arch Toxicol, 2018, 92(11):3251-3253. [14] ETTINGER A S, ARBUCKLE T E, FISHER M, et al. Arsenic levels among pregnant women and newborns in Canada:results from the Maternal-Infant Research on Environmental Chemicals(MIREC)cohort[J]. Environ Res, 2017, 153:8-16. [15] KHANDARE A L, GOURINENI S R, VALIDANDI V. Dental fluorosis, nutritional status, kidney damage, and thyroid function along with bone metabolic indicators in school-going children living in fluoride-affected hilly areas of Doda district,Jammu and Kashmir, India[J]. Environ Monit Assess, 2017, 189(11):579. [16] SAMAL A C, BHATTACHARYA P, MALLICK A, et al. A study to investigate fluoride contamination and fluoride exposure dose assessment in lateritic zones of West Bengal,India[J]. Environ Sci Pollut Res Int, 2015, 22(8):6220-6229. [17] XIONG X Z, LIU J L, HE W H, et al. Dose-effect relationship between drinking water fluoride levels and damage to liver and kidney functions in children[J]. Environ Res, 2007, 103(1):112-116. [18] DAS N, DAS A, SARMA K P, et al. Provenance, prevalence and health perspective of co-occurrences of arsenic, fluoride and uranium in the aquifers of the Brahmaputra River floodplain[J]. Chemosphere, 2018, 194:755-772. [19] RAHIM A, ESSAMADI A, EL AMIRI B. A comprehensive review on endemic and experimental fluorosis in sheep:its diverse effects and prevention[J]. Toxicology, 2022, 465:153025. [20] MARTÍNEZ-CASTILLO M, GARCÍA-MONTALVO E A,ARELLANO-MENDOZA M G, et al. Arsenic exposure and non-carcinogenic health effects[J]. Hum Exp Toxicol, 2021, 40(12_suppl):S826-S850. [21] QUADRI J, ALAM M, SARWAR S, et al. Fluoride induced nephrotoxicity:apoptosis, ultrastructural changes and renal tubular injury in experimental animals[J]. IJAPR, 2016, 4(8):91-95 [22] LI H J, FAN J J, ZHAO Y F, et al. Calcium alleviates fluoride-induced kidney damage via FAS/FASL, TNFR/TNF,DR5/TRAIL pathways in rats[J]. Ecotoxicol Environ Saf, 2021,226:112851. [23] ZHU C H, HUANG S M, YUAN Y G, et al. Mitochondrial dysfunction mediates aldosterone-induced podocyte damage:a therapeutic target of PPARγ[J]. Am J Pathol, 2011, 178(5):2020-2031. [24] WANG W J, WANG Y, LONG J Y, et al. Mitochondrial fission triggered by hyperglycemia is mediated by ROCK1 activation in podocytes and endothelial cells[J]. Cell Metab, 2012, 15(2):186-200. [25] SHAH P, TRINH E, QIANG L, et al. Arsenic induces p62expression to form a positive feedback loop with Nrf2 in human epidermal keratinocytes:implications for preventing arsenicinduced skin cancer[J]. Molecules, 2017, 22(2):194. [26] ZHAO Y F, LI Y Y, WANG J M, et al. Fluoride induces apoptosis and autophagy through the IL-17 signaling pathway in mice hepatocytes[J]. Arch Toxicol, 2018, 92(11):3277-3289. [27] WU M, LAO Y Z, TAN H S, et al. Oblongifolin C suppresses lysosomal function independently of TFEB nuclear translocation[J]. Acta Pharmacol Sin, 2019, 40(7):929-937. [28] BOYA P, REGGIORI F, CODOGNO P. Emerging regulation and functions of autophagy[J]. Nat Cell Biol, 2013, 15(7):713-720. [29] KOERVER L, PAPADOPOULOS C, LIU B, et al. The ubiquitin-conjugating enzyme UBE2QL1 coordinates lysophagy in response to endolysosomal damage[J]. EMBO Rep, 2019, 20(10):e48014. [30] FERNÁNDEZÁF, SEBTI S, WEI Y J, et al. Disruption of the beclin 1-BCL2 autophagy regulatory complex promotes longevity in mice[J]. Nature, 2018, 558(7708):136-140. [31] KABEYA Y, MIZUSHIMA N, UENO T, et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000,19(21):5720-5728. [32] ZHANG X, WEI M P, FAN J H, et al. Ischemia-induced upregulation of autophagy preludes dysfunctional lysosomal storage and associated synaptic impairments in neurons[J].Autophagy, 2021, 17(6):1519-1542. [33] BONTEMPS-KARCHER A, MAGNERON V, CONQUET L, et al. Renal adaptive response to exposure to low doses of uranyl nitrate and sodium fluoride in mice[J]. J Trace Elem Med Biol,2021, 64:126708. [34] URUT F, DEDE S, YUKSEK V, et al. In vitro evaluation of the apoptotic, autophagic, and necrotic molecular pathways of fluoride[J]. Biol Trace Elem Res, 2021, 199(10):3700-3706. [35] LI Y W, LIU Y W, YI J N, et al. The potential risks of chronic fluoride exposure on nephrotoxic via altering glucolipid metabolism and activating autophagy and apoptosis in ducks[J].Toxicology, 2021, 461:152906. [36] WU S F, YU W L, JIANG X X, et al. Protective effects of curcumin on ATO-induced nephrotoxicity in ducks in relation to suppressed autophagy, apoptosis and dyslipidemia by regulating oxidative stress[J]. Ecotoxicol Environ Saf, 2021,219:112350. [37] SIVASANKAR V, DARCHEN A, OMINE K, et al. Fluoride:A world ubiquitous compound, its chemistry, and ways of contamination[J]. Surf Modif Carbons Scav Fluoride From Water, 2016:5-32. [38] BUNDSCHUH J, FARIAS B, MARTIN R, et al. Groundwater arsenic in the Chaco-Pampean Plain, Argentina:case study from Robles County, Santiago del Estero Province[J]. Appl Geochem, 2004, 19(2):231-243. [39] MITTAL M, FLORA S J S. Effects of individual and combined exposure to sodium arsenite and sodium fluoride on tissue oxidative stress, arsenic and fluoride levels in male mice[J].Chem Biol Interact, 2006, 162(2):128-139. [40] ZHU Y P, XI S H, LI M Y, et al. Fluoride and arsenic exposure affects spatial memory and activates the ERK/CREB signaling pathway in offspring rats[J]. Neurotoxicology, 2017, 59:56-64. [41] LIU P H, LI R, TIAN X L, et al. Co-exposure to fluoride and arsenic disrupts intestinal flora balance and induces testicular autophagy in offspring rats[J]. Ecotoxicol Environ Saf, 2021,222:112506. [42] LI M, FENG J, CHENG Y, et al. Arsenic-fluoride co-exposure induced endoplasmic Reticulum stress resulting in apoptosis in rat heart and H9c2 cells[J]. Chemosphere, 2022, 288(Pt 2):132518. [43] TIAN X L, FENG J, DONG N S, et al. Subchronic exposure to arsenite and fluoride from gestation to puberty induces oxidative stress and disrupts ultrastructure in the kidneys of rat offspring[J]. Sci Total Environ, 2019, 686:1229-1237. |