[1] BOWTELL D D, BÖHM S, AHMED A A, et al. Rethinking ovarian cancer II:reducing mortality from high-grade serous ovarian cancer[J]. Nat Rev Cancer, 2015, 15(11):668-679. [2] ZHANG B, CHEN F, XU Q, et al. Revisiting ovarian cancer microenvironment:a friend or a foe?[J]. Protein Cell, 2018, 9(8):674-692. [3] XU S, YANG Z Y, JIN P, et al. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer[J]. Mol Cancer Ther, 2018, 17(6):1291-1302. [4] EMMINGS E, MULLANY S, CHANG Z, et al. Targeting mitochondria for treatment of chemoresistant ovarian cancer[J]. Int J Mol Sci, 2019, 20(1):229. [5] GREPPI M, TABELLINI G, PATRIZI O, et al. Strengthening the AntiTumor NK cell function for the treatment of ovarian cancer[J]. Int J Mol Sci, 2019, 20(4):890. [6] KIPPS E, TAN D S, KAYE S B. Meeting the challenge of ascites in ovarian cancer:new avenues for therapy and research[J]. Nat Rev Cancer, 2013, 13(4):273-282. [7] HANAHAN D, WEINBERG R A. Hallmarks of cancer:the next generation[J]. Cell, 2011, 144(5):646-674. [8] KALLURI R, ZEISBERG M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392-401. [9] PARAISO K H, SMALLEY K S. Fibroblast-mediated drug resistance in cancer[J]. Biochem Pharmacol, 2013, 85(8):1033-1041. [10] CHIEN J, KUANG R, LANDEN C, et al. Platinum-sensitive recurrence in ovarian cancer:the role of tumor microenvironment[J]. Front Oncol, 2013, 3:251. [11] WANG L, ZHANG F, CUI J Y, et al. CAFs enhance paclitaxel resistance by inducing EMT through the IL-6/JAK2/STAT3 pathway[J]. Oncol Rep, 2018, 39(5):2081-2090. [12] OSTUNI R, KRATOCHVILL F, MURRAY P J, et al. Macrophages and cancer:from mechanisms to therapeutic implications[J]. Trends Immunol, 2015, 36(4):229-239. [13] DULUC D, CORVAISIER M, BLANCHARD S, et al. Interferon-gamma reverses the immunosuppressive and protumoral properties and prevents the generation of human tumor-associated macrophages[J]. Int J Cancer, 2009, 125(2):367-373. [14] MANTOVANI A, ALLAVENA P. The interaction of anticancer therapies with tumor-associated macrophages[J]. J Exp Med, 2015, 212(4):435-445. [15] AKIYAMA K, OHGA N, HIDA Y, et al. Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment[J]. Am J Pathol, 2012, 180(3):1283-1293. [16] TURLEY S J, CREMASCO V, ASTARITA J L. Immunological hallmarks of stromal cells in the tumour microenvironment[J]. Nat Rev Immunol, 2015, 15(11):669-682. [17] TALMADGE J E, GABRILOVICH D I. History of myeloid-derived suppressor cells[J]. Nat Rev Cancer, 2013, 13(10):739-752. [18] MULLIGAN J K, DAY T A, GILLESPIE M B, et al. Secretion of vascular endothelial growth factor by oral squamous cell carcinoma cells skews endothelial cells to suppress T-cell functions[J]. Hum Immunol, 2009, 70(6):375-382. [19] ZHU M C, WANG J, WUNA Y Y, et al. Research progress in the treatment of partial platinum-sensitive recurrent ovarian cancer[J]. J Cent South Univ Med Sci, 2021, 46(6):644-652. [20] MEADS M B, GATENBY R A, DALTON W S. Environment-mediated drug resistance:a major contributor to minimal residual disease[J]. Nat Rev Cancer, 2009, 9(9):665-674. [21] AMOROSO M R, MATASSA D S, AGLIARULO I, et al. Stressadaptive response in ovarian cancer drug resistance:role of TRAP1 in oxidative metabolism-driven inflammation[J]. Adv Protein Chem Struct Biol, 2017, 108:163-198. [22] HE M, WU H Z, JIANG Q, et al. Hypoxia-inducible factor-2α directly promotes BCRP expression and mediates the resistance of ovarian cancer stem cells to adriamycin[J]. Mol Oncol, 2019, 13(2):403-421. [23] KULBE H, CHAKRAVARTY P, LEINSTER D A, et al. A dynamic inflammatory cytokine network in the human ovarian cancer microenvironment[J]. Cancer Res, 2012, 72(1):66-75. [24] WEN Y P, GUO Y, HUANG Z J, et al. Adipose-derived mesenchymal stem cells attenuate cisplatin-induced apoptosis in epithelial ovarian cancer cells[J]. Mol Med Rep, 2017, 16(6):9587-9592. [25] WEI D Y, GENG F, LIANG S M, et al. CAF-derived HGF promotes cell proliferation and drug resistance by up-regulating the c-Met/PI3K/Akt and GRP78 signalling in ovarian cancer cells[J]. Biosci Rep, 2017, 37(2):BSR20160470. [26] VON REKOWSKI K W, KÖNIG P, HENZE S, et al. The impact of integrin-mediated matrix adhesion on cisplatin resistance of W1 ovarian cancer cells[J]. Biomolecules, 2019, 9(12):788. [27] RUFFELL B, CHANG-STRACHAN D, CHAN V, et al. Macrophage IL-10 blocks CD8+ T cell-dependent responses to chemotherapy by suppressing IL-12 expression in intratumoral dendritic cells[J]. Cancer Cell, 2014, 26(5):623-637. [28] JINUSHI M, CHIBA S, YOSHIYAMA H, et al. Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells[J]. Proc Natl Acad Sci USA, 2011, 108(30):12425-12430. [29] SHREE T, OLSON O C, ELIE B T, et al. Macrophages and cathepsin proteases blunt chemotherapeutic response in breast cancer[J]. Genes Dev, 2011, 25(23):2465-2479. [30] WEIZMAN N, KRELIN Y, SHABTAY-ORBACH A, et al. Macrophages mediate gemcitabine resistance of pancreatic adenocarcinoma by upregulating cytidine deaminase[J]. Oncogene, 2014, 33(29):3812-3819. [31] MLYNSKA A, POVILAITYTE E, ZEMLECKAITE I, et al. Platinum sensitivity of ovarian cancer cells does not influence their ability to induce M2-type macrophage polarization[J]. Am J Reprod Immunol, 2018, 80(3):e12996. [32] KANLIKILICER P, BAYRAKTAR R, DENIZLI M, et al. Exosomal miRNA confers chemo resistance via targeting Cav1/p-gp/M2-type macrophage axis in ovarian cancer[J]. EBioMedicine, 2018, 38:100-112. [33] CORTÉS M, SANCHEZ-MORAL L, DE BARRIOS O, et al. Tumorassociated macrophages (TAMs) depend on ZEB1 for their cancerpromoting roles[J]. EMBO J, 2017, 36(22):3336-3355. [34] NAKASONE E S, ASKAUTRUD H A, KEES T, et al. Imaging tumorstroma interactions during chemotherapy reveals contributions of the microenvironment to resistance[J]. Cancer Cell, 2012, 21(4):488-503. |