[1] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015[J]. CA:Cancer J Clin, 2016, 66(2):115-132. [2] LAGERGREN J, SMYTH E, CUNNINGHAM D, et al. Oesophageal cancer[J]. Lancet, 2017, 390(10110):2383-2396. [3] PENNATHUR A, GIBSON M K, JOBE B A, et al. Oesophageal carcinoma[J]. Lancet, 2013, 381(9864):400-412. [4] SHI C, PAN B Q, SHI F, et al. Sequestosome 1 protects esophageal squamous carcinoma cells from apoptosis via stabilizing SKP2 under serum starvation condition[J]. Oncogene, 2018, 37(24):3260-3274. [5] SÁNCHEZ-MARTÍN P, SAITO T, KOMATSU M. p62/SQSTM1:'Jack of all trades'in health and cancer[J]. Febs J, 2019, 286(1):8-23. [6] LI D, HE C, YE F, et al. p62 overexpression promotes bone metastasis of lung adenocarcinoma out of LC3-dependent autophagy[J]. Front Oncol, 2021, 11:609548. [7] YOKOTA A, HIRAMOTO M, HINO H, et al. Sequestosome 1(p62) accumulation in breast cancer cells suppresses progesterone receptor expression via argonaute 2[J]. Biochem Biophys Res Commun, 2020, 531(2):256-263. [8] MAO Y, DENG S J, SU Y J, et al. The role of P62 in the development of human thyroid cancer and its possible mechanism[J]. Cancer Genet, 2021, 256/257:5-16. [9] LEI C, ZHAO B, LIU L, et al. Expression and clinical significance of p62 protein in colon cancer[J]. Medicine:Baltimore, 2020, 99(3):e18791. [10] BURDELSKI C, REISWICH V, HUBE-MAGG C, et al. Cytoplasmic accumulation of sequestosome 1(p62) is a predictor of biochemical recurrence, rapid tumor cell proliferation, and genomic instability in prostate cancer[J]. Clin Cancer Res, 2015, 21(15):3471-3479. [11] PANKIV S, LAMARK T, BRUUN J A, et al. Nucleocytoplasmic shuttling of p62/SQSTM1 and its role in recruitment of nuclear polyubiquitinated proteins to promyelocytic leukemia bodies[J]. J Biol Chem, 2010, 285(8):5941-5953. [12] ISLAM M, SOORO M, ZHANG P H. Autophagic regulation of p62 is critical for cancer therapy[J]. Int J Mol Sci, 2018, 19(5):1405. [13] WANG S B, VENKATRAMAN V, CROWGEY E L, et al. Protein S-nitrosylation controls glycogen synthase kinase 3β function independent of its phosphorylation state[J]. Circ Res, 2018, 122(11):1517-1531. [14] FRAME S, COHEN P. GSK3 takes centre stage more than 20 years after its discovery[J]. Biochem J, 2001, 359(pt 1):1-16. [15] JOPE R S. Lithium and GSK-3:one inhibitor, two inhibitory actions, multiple outcomes[J]. Trends Pharmacol Sci, 2003, 24(9):441-443. [16] JOPE R S, JOHNSON G V. The glamour and gloom of glycogen synthase kinase-3[J]. Trends Biochem Sci, 2004, 29(2):95-102. [17] LIN J T, SONG T, LI C, et al. GSK-3β in DNA repair, apoptosis, and resistance of chemotherapy, radiotherapy of cancer[J]. Biochim et Biophys Acta BBA Mol Cell Res, 2020, 1867(5):118659. [18] GUO L, CHEN D K, YIN X, et al. GSK-3β promotes cell migration and inhibits autophagy by mediating the AMPK pathway in breast cancer[J]. Oncol Res, 2019, 27(4):487-494. [19] CHEN R, ZHANG Y Y, LAN J N, et al. Ischemic postconditioning alleviates intestinal ischemia-reperfusion injury by enhancing autophagy and suppressing oxidative stress through the Akt/GSK-3β/Nrf2 pathway in mice[J]. Oxid Med Cell Longev, 2020, 2020:6954764. [20] REN J L, LIU T T, HAN Y, et al. GSK-3β inhibits autophagy and enhances radiosensitivity in non-small cell lung cancer[J]. Diagn Pathol, 2018, 13(1):1-10. [21] WEIBRECHT I, LEUCHOWIUS K J, CLAUSSON C M, et al. Proximity ligation assays:a recent addition to the proteomics toolbox[J]. Expert Rev Proteom, 2010, 7(3):401-409. |