[1] JAYARAJ R L, AZIMULLAH S, BEIRAM R. Diabetes as a risk factor for Alzheimer's disease in the Middle East and its shared pathological mediators[J]. Saudi J Biol Sci, 2020, 27(2):736-750. [2] DAI Y, KAMAL M A. Fighting Alzheimer's disease and type 2 diabetes:pathological links and treatment strategies[J]. CNS Neurol Disord Drug Targets, 2014, 13(2):271-282. [3] HUNTER K, HÖLSCHER C. Drugs developed to treat diabetes, liraglutide and lixisenatide, cross the blood brain barrier and enhance neurogenesis[J]. BMC Neurosci, 2012, 13:33. [4] MUSCOGIURI G, DEFRONZO R A, GASTALDELLI A, et al. Glucagon-like peptide-1 and the central/peripheral nervous system:crosstalk in diabetes[J]. Trends Endocrinol Metab, 2017, 28(2):88-103. [5] HANSEN H H, FABRICIUS K, BARKHOLT P, et al. The GLP-1 receptor agonist liraglutide improves memory function and increases hippocampal CA1 neuronal numbers in a senescence-accelerated mouse model of Alzheimer's disease[J]. J Alzheimers Dis, 2015, 46(4):877-888. [6] QI L Q, KE L F, LIU X H, et al. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model[J]. Eur J Pharmacol, 2016, 783:23-32. [7] MEHLA J, PAHUJA M, GUPTA Y K. Streptozotocin-induced sporadic Alzheimer's disease:selection of appropriate dose[J]. J Alzheimers Dis, 2013, 33(1):17-21. [8] A ARMSTRONG R. Risk factors for Alzheimer's disease[J]. Folia Neuropathol, 2019, 57(2):87-105. [9] BERTRAM L, TANZI R E. The genetics of Alzheimer's disease[M]//Progress in Molecular Biology and Translational Science. Amsterdam:Elsevier, 2012:79-100. [10] GAMES D, ADAMS D, ALESSANDRINI R, et al. Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein[J]. Nature, 1995, 373(6514):523-527. [11] ESQUERDA-CANALS G, MONTOLIU-GAYA L, GüELL-BOSCH J, et al. Mouse models of Alzheimer's disease[J]. J Alzheimer's Dis, 2017, 57(4):1171-1183. [12] CACACE R, SLEEGERS K, VAN BROECKHOVEN C. Molecular genetics of early-onset Alzheimer's disease revisited[J]. Alzheimers Dement, 2016, 12(6):733-748. [13] ZAHS K R, ASHE K H. ‘Too much good news’-are Alzheimer mouse models trying to tell us how to prevent, not cure, Alzheimer's disease?[J]. Trends Neurosci, 2010, 33(8):381-389. [14] VORONKOV D N, STAVROVSKAYA A V, STELMASHOOK E V, et al. Neurodegenerative changes in rat brain in streptozotocin model of Alzheimer's disease[J]. Bull Exp Biol Med, 2019, 166(6):793-796. [15] GRIEB P. Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease:in search of a relevant mechanism[J]. Mol Neurobiol, 2016, 53(3):1741-1752. [16] HARDY J, ALLSOP D. Amyloid deposition as the central event in the aetiology of Alzheimer's disease[J]. Trends Pharmacol Sci, 1991, 12:383-388. [17] MOSCONI L, DE SANTI S, LI J, et al. Hippocampal hypometabolism predicts cognitive decline from normal aging[J]. Neurobiol Aging, 2008, 29(5):676-692. [18] GRIEB P. Intracerebroventricular streptozotocin injections as a model of Alzheimer's disease:in search of a relevant mechanism[J]. Mol Neurobiol, 2016, 53(3):1741-1752. [19] RAVELLI K G, ROSáRIO B D, CAMARINI R, et al. Intracerebroventricular streptozotocin as a model of Alzheimer's disease:neurochemical and behavioral characterization in mice[J]. Neurotox Res, 2017, 31(3):327-333. [20] LI C, LIU W Z, LI X H, et al. The novel GLP-1/GIP analogue DA5-CH reduces tau phosphorylation and normalizes Theta rhythm in the icv. STZ rat model of AD[J]. Brain Behav, 2020, 10(3):e01505. [21] BIASIBETTI R, ALMEIDA DOS SANTOS J P, RODRIGUES L, et al. Hippocampal changes in STZ-model of Alzheimer's disease are dependent on sex[J]. Behav Brain Res, 2017, 316:205-214. |