[1] YAN S H, WU H M, QIN J H, et al. Halogen-free organophosphorus flame retardants caused oxidative stress and multixenobiotic resistance in Asian freshwater clams (Corbicula fluminea)[J]. Environ Pollut, 2017, 225:559-568. [2] 戴志民, 王伍超. 巨噬细胞吞噬作用的研究进展[J]. 世界最新医学信息文摘, 2015, 15(84):33-35. [3] KLEIN D C, SKJESOL A, KERS-REBEL E D, et al. CD14, TLR4 and TRAM show different trafficking dynamics during LPS stimulation[J]. Traffic, 2015, 16(7):677-690. [4] ALZAHRANI J, HUSSAIN T, SIMAR D, et al. Inflammatory and immunometabolic consequences of gut dysfunction in HIV:Parallels with IBD and implications for reservoir persistence and non-AIDS comorbidities[J]. EBioMedicine, 2019, 46:522-531. [5] PENG K Y, GU J F, SU S L, et al. Salvia miltiorrhiza stems and leaves total phenolic acids combination with tanshinone protect against DSS-induced ulcerative colitis through inhibiting TLR4/PI3K/AKT/mTOR signaling pathway in mice[J]. J Ethnopharmacol, 2021, 264:113052. [6] ZHAO F, CHEN M, GAO F, et al. Organophosphorus flame retardants in pregnant women and their transfer to chorionic villi[J]. Environ Sci Technol, 2017, 51(11):6489-6497. [7] HU Y X, SUN Y X, LI X, et al. Organophosphorus flame retardants in mangrove sediments from the Pearl River Estuary, South China[J]. Chemosphere, 2017, 181:433-439. [8] WANG Y, WU X, ZHANG Q, et al. Occurrence, distribution, and air-water exchange of organophosphorus flame retardants in a typical coastal area of China[J]. Chemosphere, 2018, 211:335-344. [9] VELáZQUEZ-GóMEZ M, LACORTE S. Nasal lavages as a tool for monitoring exposure to organic pollutants[J]. Environ Res, 2019, 178:108726. [10] WANG L, HUANG X L, LIM D J, et al. Uptake and toxic effects of triphenyl phosphate on freshwater microalgae Chlorella vulgaris and Scenedesmus obliquus:Insights from untargeted metabolomics[J]. Sci Total Environ, 2019, 650(Sup 1):1239-1249. [11] CHOI Y, JEON J, CHOI Y, et al. Characterizing biotransformation products and pathways of the flame retardant triphenyl phosphate in Daphnia magna using non-target screening[J]. Sci Total Environ, 2020, 708:135106. [12] HONG X, CHEN R, YUAN L, et al. Global microRNA and isomiR expression associated with liver metabolism is induced by organophosphorus flame retardant exposure in male Chinese rare minnow (Gobiocypris rarus)[J]. Sci Total Environ, 2019, 649:829-838. [13] SHI Q P, TSUI M M P, HU C Y, et al. Acute exposure to triphenyl phosphate (TPhP) disturbs ocular development and muscular organization in zebrafish larvae[J]. Ecotoxicol Environ Saf, 2019, 179:119-126. [14] MA J, ZHU H K, KANNAN K. Organophosphorus flame retardants and plasticizers in breast milk from the United States[J]. Environ Sci Technol Lett, 2019, 6(9):525-531. [15] CHEN R, HOU R, HONG X S, et al. Organophosphate flame retardants (OPFRs) induce genotoxicity in vivo:a survey on apoptosis, DNA methylation, DNA oxidative damage, liver metabolites, and transcriptomics[J]. Environ Int, 2019, 130:104914. [16] VOLZ D C, LEET J K, CHEN A, et al. Tris(1, 3-dichloro-2-propyl) phosphate induces genome-wide hypomethylation within early zebrafish embryos[J]. Environ Sci Technol, 2016, 50(18):10255-10263. [17] 陈敏, 廖晓亮, 杨春, 等. 典型有机磷酸酯在小鼠组织内的特异性分布[J]. 环境化学, 2020, 39(10):2627-2636. [18] HONG X, CHEN R, HOU R, et al. Triphenyl phosphate(TPHP)-induced neurotoxicity in adult male chinese rare minnows (gobiocypris rarus)[J]. Environ Sci Technol, 2018, 52(20):11895-11903. [19] CANBAZ D, VAN VELZEN M J, HALLNER E, et al. Exposure to organophosphate and polybrominated diphenyl ether flame retardants via indoor dust and childhood asthma[J]. Indoor Air, 2016, 26(3):403-413. [20] CHEN G L, JIN Y X, WU Y, et al. Exposure of male mice to two kinds of organophosphate flame retardants (OPFRs) induced oxidative stress and endocrine disruption[J]. Environ Toxicol Pharmacol, 2015, 40(1):310-318. [21] KUSNADI A, PARK S H, YUAN R X, et al. The cytokine TNF promotes transcription factor SREBP activity and binding to inflammatory genes to activate macrophages and limit tissue repair[J]. Immunity, 2019, 51(2):241-257. [22] AN J, HU J W, SHANG Y, et al. The cytotoxicity of organophosphate flame retardants on HepG2, A549 and Caco-2 cells[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2016, 51(11):980-988. [23] CANBAZ D, LOGIANTARA A, VAN REE R, et al. Immunotoxicity of organophosphate flame retardants TPHP and TDCIPP on murine dendritic cells in vitro[J]. Chemosphere, 2017, 177:56-64. [24] 王志明, 赵嫦清, 李泽龙, 等. Toll样受体4信号通路在巨噬细胞调节基质金属蛋白酶9和14中的作用机制[J]. 中华老年心脑血管病杂志, 2020, 22(10):1081-1084. [25] WANG J Z, ZHANG P, HE H B, et al. Eburicoic acid from Laetiporus sulphureus (Bull.:Fr.) Murrill attenuates inflammatory responses through inhibiting LPS-induced activation of PI3K/Akt/mTOR/NF-κB pathways in RAW264.7 cells[J]. Naunyn Schmiedebergs Arch Pharmacol, 2017, 390(8):845-856. [26] ZHOU M, XU W, WANG J, et al. Boosting mTOR-dependent autophagy via upstream TLR4-MyD88-MAPK signalling and downstream NF-κB pathway quenches intestinal inflammation and oxidative stress injury[J]. EBioMedicine, 2018, 35:345-360. [27] KOUNDOUROS N, POULOGIANNIS G. Phosphoinositide 3-kinase/Akt signaling and redox metabolism in cancer[J]. Front Oncol, 2018, 8:160. [28] XIA P, XU X Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells:from basic research to clinical application[J]. Am J Cancer Res, 2015, 5(5):1602-1609. [29] LEE J H, PHELAN P, SHIN M, et al. SREBP-1a-stimulated lipid synthesis is required for macrophage phagocytosis downstream of TLR4-directed mTORC1[J]. Proc Natl Acad Sci USA, 2018, 115(52):E12228-E12234. |