[1] LOUIS D N, PERRY A, REIFENBERGER G, et al. The 2016 World Health Organization classification of tumors of the central nervous system:a summary[J]. Acta Neuropathol, 2016, 131(6):803-820. [2] OSTROM Q T, PATIL N, CIOFFI G, et al. CBTRUS statistical report:primary brain and other central nervous system tumors diagnosed in the United States in 2013-2017[J]. Neuro Oncol, 2020, 22(12 Sup 2):1-96. [3] UZU M, SIN W, SHIMIZU A, et al. Conflicting roles of Connexin43 in tumor invasion and growth in the central nervous system[J]. Int J Mol Sci, 2018, 19(4):1159. [4] WANG J, YANG Z Y, GUO Y F, et al. Targeting different domains of gap junction protein to control malignant glioma[J]. Neuro Oncol, 2018, 20(7):885-896. [5] SUBRAMANIAN A, TAMAYO P, MOOTHA V K, et al. Gene set enrichment analysis:a knowledge-based approach for interpreting genome-wide expression profiles[J]. Proc Natl Acad Sci USA, 2005, 102(43):15545-15550. [6] NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5):453-457. [7] ORELLANA V P, TITTARELLI A, RETAMAL M A. Connexins in melanoma:Potential role of Cx46 in its aggressiveness[J]. Pigment Cell Melanoma Res, 2020:12945. [8] AI X L, CHI Q, QIU Y, et al. Gap junction protein connexin43 deregulation contributes to bladder carcinogenesis via targeting MAPK pathway[J]. Mol Cell Biochem, 2017, 428(1/2):109-118. [9] CHEN C X, LUO K J, YANG J P, et al. Connexins and cAMP cross-talk in cancer progression and metastasis[J]. Cancers, 2020, 13(1):58. [10] YE X Y, JIANG Q H, HONG T, et al. Altered expression of connexin43 and phosphorylation connexin43 in glioma tumors[J]. Int J Clin Exp Pathol, 2015, 8(5):4296-4306. [11] CRESPIN S, FROMONT G, WAGER M, et al. Expression of a gap junction protein, connexin43, in a large panel of human gliomas:new insights[J]. Cancer Med, 2016, 5(8):1742-1752. [12] MCDUFF S G R, DIETRICH J, ATKINS K M, et al. Radiation and chemotherapy for high-risk lower grade gliomas:Choosing between temozolomide and PCV[J]. Cancer Med, 2020, 9(1):3-11. [13] CHEN S C, LO C M, WANG S H, et al. RNA editing-based classification of diffuse gliomas:predicting isocitrate dehydrogenase mutation and chromosome 1p/19q codeletion[J]. BMC Bioinformatics, 2019, 20(Sup 19):659. [14] HONG X, SIN W C, HARRIS A L, et al. Gap junctions modulate glioma invasion by direct transfer of microRNA[J]. Oncotarget, 2015, 6(17):15566-15577. [15] HUANG B R, TSAI C H, CHEN C C, et al. Curcumin promotes connexin 43 degradation and temozolomide-induced apoptosis in glioblastoma cells[J]. Am J Chin Med, 2019, 47(3):657-674. [16] MILLS C D, LENZ L L, HARRIS R A. A breakthrough:macrophage-directed cancer immunotherapy[J]. Cancer Res, 2016, 76(3):513-516. [17] LI M X, WANG H Y, YUAN C H, et al. KLHDC7B-DT aggravates pancreatic ductal adenocarcinoma development via inducing cross-talk between cancer cells and macrophages[J]. Clin Sci Lond Engl, 2021, 135(4):629-649. [18] JIANG B, ZHU S J, XIAO S S, et al. miR-217 inhibits M2-like macrophage polarization by suppressing secretion of interleukin-6 in ovarian cancer[J]. Inflammation, 2019, 42(5):1517-1529. [19] BAO L, LI X. microRNA-32 targeting PTEN enhances M2 macrophage polarization in the glioma microenvironment and further promotes the progression of glioma[J]. Mol Cell Biochem, 2019, 460(1/2):67-79. [20] XUE N, ZHOU Q, JI M, et al. Chlorogenic acid inhibits glioblastoma growth through repolarizating macrophage from M2 to M1 phenotype[J]. Sci Rep, 2017, 7:39011. |