[1] 戴宏, 刘玉龙, 王优优, 等. 南京“5.7” 192Ir源放射事故患者的生物剂量估算[J]. 中华放射医学与防护杂志, 2016, 36(5): 350-354. [2] 白玉书, 陈德清. 人类辐射细胞遗传学[M]. 北京: 人民卫生出版社, 2006. [3] SASAKI M S, MIYATA H. Biological dosimetry in atomic bomb survivors[J]. Nature, 1968, 220(5173): 1189-1193. [4] YAO B, LI Y F, LIU G X, et al. Estimation of the biological dose received by five victims of a radiation accident using three different cytogenetic tools[J]. Mutat Res, 2013, 751(1): 66-72. [5] BAZYKA D, FINCH S C, ILIENKO I M, et al. Buccal mucosa micronuclei counts in relation to exposure to low dose-rate radiation from the Chornobyl nuclear accident and other medical and occupational radiation exposures[J]. Environ Health, 2017, 16(1): 70. [6] RASTKHAH E, ZAKERI F, GHORANNEVISS M, et al. The cytokinesis-blocked micronucleus assay: dose-response calibration curve, background frequency in the population and dose estimation[J]. Radiat Environ Biophys, 2016, 55(1): 41-51. [7] International Atomic Energy Agency: IAEA STI/PUB/229. Biological dosimetry with particular reference to chromosomal aberration analysis[R]. Vienna: IAEA, 1969. [8] PUJOL M, BARRIOS L, PUIG P, et al. A new model for biological dose assessment in cases of heterogeneous exposures to ionizing radiation[J]. Radiat Res, 2016, 185(2): 151-162. [9] 韩保光, 陈迪, 金璀珍, 等. 染色体畸变分析用于离体模拟与活体局部照射剂量估计的实验研究[J]. 辐射防护, 1993, 13(6): 401-413. [10] VOISIN P, ASSAEI R G, HEIDARY A, et al. Mathematical methods in biological dosimetry: the 1996 Iranian accident[J]. Int J Radiat Biol, 2000, 76(11): 1545-1554. [11] BULL C F, MAYRHOFER G, ZEEGERS D, et al. Folate deficiency is associated with the formation of complex nuclear anomalies in the cytokinesis-block micronucleus cytome assay [J]. Environ Mol Mutagen, 2012, 53(4): 311-323. [12] FENECH M. The lymphocyte cytokinesis-block micronucleus cytome assay and its application in radiation biodosimetry[J]. Heal Phys, 2010, 98(2): 234-243. [13] 中华人民共和国卫生部. 淋巴细胞微核估算受照剂量的方法: WS/T 187—1999[S]. 北京: 中国标准出版社, 2000. [14] MENDES M E, MENDONÇA J C G, BARQUINERO J F, et al. Comparative study of micronucleus assays and dicentric plus ring chromosomes for dose assessment in particular cases of partial-body exposure[J]. Int J Radiat Biol, 2019, 95(8): 1058-1071. [15] CAI T J, LU X, TIAN X L, et al. Effects of age and gender on the baseline and 2 Gy 60Co γ-ray-induced nucleoplasmic bridges frequencies in the peripheral blood lymphocytes of Chinese population[J]. Mutat Res Genet Toxicol Environ Mutagen, 2018, 832/833: 29-34. [16] NEFIC H, HANDZIC I. The effect of age, sex, and lifestyle factors on micronucleus frequency in peripheral blood lymphocytes of the Bosnian population[J]. Mutat Res, 2013, 753(1): 1-11. [17] FENECH M, MORLEY A A. The effect of donor age on spontaneous and induced micronuclei[J]. Mutat Res, 1985, 148(1/2): 99-105. [18] ANDREASSI M G, BARALE R, IOZZO P, et al. The association of micronucleus frequency with obesity, diabetes and cardiovascular disease[J]. Mutagenesis, 2011, 26(1): 77-83. [19] JONES K H, YORK T P, JUUSOLA J, et al. Genetic and environmental influences on spontaneous micronuclei frequencies in children and adults: a twin study[J]. Mutagenesis, 2011, 26(6): 745-752. [20] PRASANNA P G, MORONI M, PELLMAR T C. Triage dose assessment for partial-body exposure: dicentric analysis[J]. Health Phys, 2010, 98(2): 244-251. [21] LEE J K. Practical applications of cytogenetic biodosimetry in radiological emergencies[J]. Korean J Hematol, 2011, 46(2): 62-64. |