[1] MUKHERJEE A, AGRAWAL M. A global perspective of fine particulate matter pollution and its health effects[J]. Rev Environ Contam Toxicol, 2018, 244:5-51. [2] APTE J S, MARSHALL J D, COHEN A J, et al. Addressing global mortality from ambient PM2.5[J]. Environ Sci Technol, 2015, 49(13):8057-8066. [3] BOURDREL T, BIND M A, BéJOT Y, et al. Cardiovascular effects of air pollution[J]. Arch Cardiovasc Dis, 2017, 110(11):634-642. [4] HUANG J, LI G X, WANG J W, et al. Associations between long-term ambient PM2.5 exposure and prevalence of chronic kidney disease in China:a national cross-sectional study[J]. Lancet, 2019, 394:S93. [5] RAASCHOU-NIELSEN O, PEDERSEN M, STAFOGGIA M, et al. Outdoor air pollution and risk for kidney parenchyma cancer in 14 European cohorts[J]. Int J Cancer, 2017, 140(7):1528-1537. [6] 严小甜, 丁志山. PM2.5暴露致机体损伤及其机制研究进展[J]. 生态毒理学报, 2019, 14(2):71-80. [7] 杨洁, 霍婷婷, 王玉琳, 等. PM2.5降尘诱导A549细胞G2/M期阻滞的机制研究[J]. 岩石矿物学杂志, 2017, 36(6):894-902. [8] 易建华, 吴晓芳, 王丽云, 等. PM2.5对呼吸系统疾病的影响及其机制的研究进展[J]. 西安交通大学学报:医学版, 2019, 40(1):167-172. [9] 王冰玉, 蔡颖, 郑凯, 等. PM2.5对HBE细胞致癌致突变相关基因表达的影响[J]. 癌变·畸变·突变, 2020, 32(1):33-38, 42. [10] 王冰玉, 郑凯, 徐新云, 等. PM2.5对支气管上皮细胞DNA损伤作用研究[J]. 癌变·畸变·突变, 2019, 31(6):469-473, 497. [11] 郑凯, 王冰玉, 徐新云, 等. 深圳和太原PM2.5样品致突变作用研究[J]. 癌变·畸变·突变, 2019, 31(6):483-487. [12] SHI L, ZANOBETTI A, KLOOG I, et al. Low-concentration PM2.5 and mortality:estimating acute and chronic effects in a population-based study[J]. Environ Health Perspect, 2016, 124(1):46-52. [13] REHMAN K, FATIMA F, WAHEED I, et al. Prevalence of exposure of heavy metals and their impact on health consequences[J]. J Cell Biochem, 2018, 119(1):157-184. [14] ORANUBA E, DENG H, PENG J, et al. Polycyclic aromatic hydrocarbons as a potential source of carcinogenicity of mate[J]. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2019, 37(1):26-41. [15] SONG C, HE J, WU L, et al. Health burden attributable to ambient PM2.5 in China[J]. Environ Pollut, 2017, 223:575-586. [16] 马起山, 胡辛楠, 秦逍云, 等. 南北两城市PM2.5样品中多环芳烃检测与特征分析[J]. 职业与健康, 2020, 36(4):542-544, 547. [17] LO Y Y, CONQUER J A, GRINSTEIN S, et al. Interleukin-1 beta induction of c-fos and collagenase expression in articular chondrocytes:involvement of reactive oxygen species[J]. J Cell Biochem, 1998, 69(1):19-29. [18] DING Y, HAO K, LI Z, et al. C-Fos separation from Lamin A/C by GDF15 promotes colon cancer invasion and metastasis in inflammatory microenvironment[J]. J Cell Physiol, 2020, 235(5):4407-4421. [19] JIAN M, QINGFU Z, YANDUO J, et al. Anti-lymphangiogenesis effects of a specific anti-interleukin 7 receptor antibody in lung cancer model in vivo[J]. Mol Carcinog, 2015, 54(2):148-155. [20] ISHIDA M, UEKI M, MORISHITA J, et al. T-5224, a selective inhibitor of c-Fos/activator protein-1, improves survival by inhibiting serum high mobility group box-1 in lethal lipopolysaccharide-induced acute kidney injury model[J]. J Intensive Care, 2015, 3:49. [21] LI R, KOU X, XIE L, et al. Effects of ambient PM2.5 on pathological injury, inflammation, oxidative stress, metabolic enzyme activity, and expression of c-fos and c-Jun in lungs of rats[J]. Environ Sci Pollut Res Int, 2015, 22(24):20167-20176. [22] ZHENG X, WANG X, WANG T, et al. Gestational exposure to particulate matter 2.5(PM2.5) leads to spatial memory dysfunction and neurodevelopmental impairment in Hippocampus of mice offspring[J]. Front Neurosci, 2018, 12:1000. [23] CIRIBILLI Y, SINGH P, SPANEL R, et al. Decoding c-Myc networks of cell cycle and apoptosis regulated genes in a transgenic mouse model of papillary lung adenocarcinomas[J]. Oncotarget, 2015, 6(31):31569-31592. [24] CAI J, SONG X, WANG W, et al. A RhoA-YAP-c-Myc signaling axis promotes the development of polycystic kidney disease[J]. Genes Dev, 2018, 32(11/12):781-793. [25] XU D, WANG B, CHEN P P, et al. C-Myc promotes tubular cell apoptosis in ischemia-reperfusion-induced renal injury by negatively regulating c-FLIP and enhancing FasL/Fas-mediated apoptosis pathway[J]. Acta Pharmacol Sin, 2019, 40(8):1058-1066. [26] CHANG Y W, SINGH K P. Arsenic-induced neoplastic transformation involves epithelial-mesenchymal transition and activation of the β-catenin/c-myc pathway in human kidney epithelial cells[J]. Chem Res Toxicol, 2019, 32(6):1299-1309. [27] XIAO Z D, HAN L, LEE H, et al. Energy stress-induced lncRNA FILNC1 represses c-Myc-mediated energy metabolism and inhibits renal tumor development[J]. Nat Commun, 2017, 8(1):783. [28] WU J, SHI Y, ASWETO C O, et al. Fine particle matters induce DNA damage and G2/M cell cycle arrest in human bronchial epithelial BEAS-2B cells[J]. Environ Sci Pollut Res Int, 2017, 24(32):25071-25081. [29] JABER S, TOUFEKTCHAN E, LEJOUR V, et al. p53 downregulates the Fanconi anaemia DNA repair pathway[J]. Nat Commun, 2016, 7:11091. [30] TANG C, MA Z, ZHU J, et al. P53 in kidney injury and repair:Mechanism and therapeutic potentials[J]. Pharmacol Ther, 2019, 195:5-12. [31] 孙丹, 杨爽, 王力宁, 等. 高糖通过抑制自噬活性和激活p53/p21信号通路促进人肾小球系膜细胞衰老[J]. 中国肾脏病杂志, 2016, 32(9):685-690. [32] ZHOU W, TIAN D, HE J, et al. Repeated PM2.5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation[J]. Oncotarget, 2016, 7(15):20691-20703. [33] LIU X, HE Y, LI F, et al. Caspase-3 promotes genetic instability and carcinogenesis[J]. Mol Cell, 2015, 58(2):284-296. [34] ZHU L, ZHU L, CHEN J, et al. Astragalin induced selective kidney cancer cell death and these effects are mediated via mitochondrial mediated cell apoptosis, cell cycle arrest, and modulation of key tumor-suppressive miRNAs[J]. J Buon, 2019, 24(3):1245-1251. [35] SOBRIDO-CAMEáN D, BARREIRO-IGLESIAS A. Role of caspase-8 and fas in cell death after spinal cord injury[J]. Front Mol Neurosci, 2018, 11:101. [36] LI X, ZHENG M N, PU J D, et al. Identification of abnormally expressed lncRNAs induced by PM2.5 in human bronchial epithelial cells[J]. Biosci Rep, 2018, 38(5):BSR20171577. [37] CHEN Y, SUN P, BAI W, et al. MiR-133a regarded as a potential biomarker for benzene toxicity through targeting Caspase-9 to inhibit apoptosis induced by benzene metabolite (1, 4-Benzoquinone)[J]. Sci Total Environ, 2016, 571:883-891. [38] ELESAWY B H, ABD EL HAFEZ A, SHAWKY AEL-A, et al. Immunohistochemistry-based subtyping of breast carcinoma in Egyptian women:a clinicopathologic study on 125 patients[J]. Ann Diagn Pathol, 2014, 18(1):21-26. |