[1] SIEGEL R L, MILLER K D, JEMAL A. Cancer statistics, 2020[J]. CA A Cancer J Clin, 2020, 70(1):7-30. [2] FLAIG T W, SPIESS P E, AGARWAL N, et al. Bladder cancer, Version 3.2020, NCCN clinical practice guidelines in oncology[J]. J Natl Compr Canc Netw, 2020, 18(3):329-354. [3] MORALES-BARRERA R, SUAREZ C, GONZALEZ M, et al. The future of bladder cancer therapy:Optimizing the inhibition of the fibroblast growth factor receptor[J]. Cancer Treat Rev, 2020, 86:102000. [4] HAVEL J J, CHOWELL D, CHAN T A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy[J]. Nat Rev Cancer, 2019, 19(3):133. [5] LEE M, SAMSTEIN R M, VALERO C, et al. Tumor mutational burden as a predictive biomarker for checkpoint inhibitor immunotherapy[J]. Hum Vaccin Immunother, 2020, 16(1):112-115. [6] ALBORELLI I, LEONARDS K, ROTHSCHILD S I, et al. Tumor mutational burden assessed by targeted NGS predicts clinical benefit from immune checkpoint inhibitors in non-small cell lung cancer[J]. J Pathol, 2020, 250(1):19-29. [7] BARROSO-SOUSA R, JAIN E, COHEN O, et al. Prevalence and mutational determinants of high tumor mutation burden in breast cancer[J]. bioRxiv, 2019, DOI:10.1101/745265. [8] ZHU J, ARMSTRONG A J, FRIEDLANDER T W, et al. Biomarkers of immunotherapy in urothelial and renal cell carcinoma:PD-L1, tumor mutational burden, and beyond[J]. J Immunother Cancer, 2018, 6(1):4. [9] HEGDE P S, CHEN D S. Top 10 challenges in cancer immunotherapy[J]. Immunity, 2020, 52(1):17-35. [10] NEWMAN A M, LIU C L, GREEN M R, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5):453. [11] PATEL S J, SANJANA N E, KISHTON R J, et al. Identification of essential genes for cancer immunotherapy[J]. Nature, 2017, 548(7669):537-542. [12] SHOLL L M, HIRSCH F R, HWANG D, et al. The promises and challenges of tumor mutation burden as an immunotherapy biomarker:a perspective from the international association for the study of lung cancer pathology committee[J]. J Thorac Oncol, 2020, 15(9):1409-1424. [13] LADÁNYI A, TÍMÁR J. Immunologic and immunogenomic aspects of tumor progression[J]. Semin Cancer Biol, 2020, 60:249-261. [14] WU Z, WANG M, LIU Q, et al. Identification of gene expression profiles and immune cell infiltration signatures between low and high tumor mutation burden groups in bladder cancer[J]. Int J Med Sci, 2020, 17(1):89-96. [15] ZHU G M, PEI L J, LI Y, et al. EP300 mutation is associated with tumor mutation burden and promotes antitumor immunity in bladder cancer patients[J]. Aging, 2020, 12(3):2132-2141. [16] MATEO J, SEED G, BERTAN C, et al. Genomics of lethal prostate cancer at diagnosis and castration resistance[J]. J Clin Invest, 2020, 130(4):1743-1751. [17] RICHARD P, ADER F, ROUX M, et al. Targeted panel sequencing in adult patients with left ventricular non-compaction reveals a large genetic heterogeneity[J]. Clin Genet, 2019, 95(3):356-367. [18] ALAM H, TANG M, MAITITUOHETI M, et al. KMT2D deficiency impairs super-enhancers to confer a glycolytic vulnerability in lung cancer[J]. Cancer Cell, 2020, 37(4):599-617.e7. [19] SHEN H, GUO M, WANG L, et al. MUC16 facilitates cervical cancer progression via JAK2/STAT3 phosphorylation-mediated cyclooxygenase-2 expression[J]. Genes Genomics, 2020, 42(2):127-133. [20] LI J, WANG W, ZHANG Y, et al. Epigenetic driver mutations in ARID1A shape cancer immune phenotype and immunotherapy[J]. J Clin Invest, 2020, 130(5):2712-2726. [21] ETTINGER D S, WOOD D E, AGGARWAL C, et al. NCCN guidelines insights:non-small cell lung cancer, version 1.2020[J]. J Natl Compr Canc Netw, 2019, 17(12):1464-1472. [22] SINGAL G, MILLER P G, AGARWALA V, et al. Association of patient characteristics and tumor genomics with clinical outcomes among patients with non-small cell lung cancer using a clinicogenomic database[J]. JAMA, 2019, 321(14):1391-1399. [23] WOJAS-KRAWCZYK K, KALINKA E, GRENDA A, et al. Beyond PD-L1 markers for lung cancer immunotherapy[J]. Int J Mol Sci, 2019, 20(8):1915. [24] ENDRIS V, BUCHHALTER I, ALLG-UER M, et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics:in silico and real-life analysis of three larger gene panels[J]. Int J Cancer, 2019, 144(9):2303-2312. [25] MUSCARELLA L A, D'ALESSANDRO V, LA TORRE A, et al. Gene expression of somatostatin receptor subtypes SSTR2a, SSTR3 and SSTR5 in peripheral blood of neuroendocrine lung cancer affected patients[J]. Cell Oncol (Dordr), 2011, 34(5):435-441. [26] BANERJEE P P, PANG L, SOLDAN S S, et al. KIR2DL4-HLAG interaction at human NK cell-oligodendrocyte interfaces regulates IFN-γ-mediated effects[J]. Mol Immunol, 2019, 115:39-55. [27] KATAOKA T R, UESHIMA C, HIRATA M, et al. Killer immunoglobulin-like receptor 2DL4(CD158d) regulates human mast cells both positively and negatively:possible roles in pregnancy and cancer metastasis[J]. Int J Mol Sci, 2020, 21(3):954. [28] VAN DER JEUGHT K, SUN Y F, FANG Y Z, et al. ST2 as checkpoint target for colorectal cancer immunotherapy[J]. JCI Insight, 2020, 5(9):e136073. DOI:10.1172/jci.insight.136073. [29] 何天基, 梁云霄, 蔡孟会, 等. 肌层浸润性膀胱癌TILs表达及其临床意义TCGA数据库分析[J]. 中华肿瘤防治杂志, 2020, 27(7):519-525. [30] GU Y, SHENG S Y, TANG Y Y, et al. PD-1 expression and function of T-cell subsets in TILs from human lung cancer[J]. J Immunother, 2019, 42(8):297-308. [31] VAN DER LEUN A M, THOMMEN D S, SCHUMACHER T N. CD8+ T cell states in human cancer:insights from single-cell analysis[J]. Nat Rev Cancer, 2020, 20(4):218. [32] SAKKAL S, MILLER S, APOSTOLOPOULOS V, et al. Eosinophils in cancer:favourable or unfavourable-[J]. Curr Med Chem, 2016, 23(7):650-666. [33] MAJORINI MT, CANCILA V, RIGONI A, et al. Infiltrating mast cell-mediated stimulation of estrogen receptor activity in breast cancer cells promotes the luminal phenotype[J]. Cancer Res, 2020, 80(11):2311-2324. |