[1] GRACIA T, HILSCHEROVA K, JONES P D, et al. The H295R system for evaluation of endocrine-disrupting effects[J]. Ecotoxicol Environ Saf, 2006, 65(3):293-305. [2] GAZDAR A F, OIE H K, SHACKLETON C H, et al. Establishment and characterization of a human adrenocortical carcinoma cell line that expresses multiple pathways of steroid biosynthesis[J]. Cancer Res, 1990, 50(17):5488-5496. [3] RAINEY W E, SANER K, SCHIMMER B P. Adrenocortical cell lines[J]. Mol Cell Endocrinol, 2004, 228(1/2):23-38. [4] RODRIGUEZ H, HUM D W, STAELS B, et al. Transcription of the human genes for cytochrome P450scc and P450c17 is regulated differently in human adrenal NCI-H295 cells than in mouse adrenal Y1 cells[J]. J Clin Endocrinol Metab, 1997, 82(2):365-371. [5] GELL J S. Adrenarche results from development of a 3-hydroxysteroid dehydrogenase-deficient adrenal reticularis[J]. J Clin Endocrinol Metab, 1998, 83(10):3695-3701. [6] TEE M K, DONG Q, MILLER W L. Pathways leading to phosphorylation of p450c17 and to the posttranslational regulation of androgen biosynthesis[J]. Endocrinology, 2008, 149(5):2667-2677. [7] RAINEY W E, CARR B R, SASANO H, et al. Dissecting human adrenal androgen production[J]. Trends Endocrinol Metab, 2002, 13(6):234-239. [8] SUZUKI T, SASANO H, TAKEYAMA J, et al. Developmental changes in steroidogenic enzymes in human postnatal adrenal cortex:immunohistochemical studies[J]. Clin Endocrinol (Oxf), 2000, 53(6):739-747. [9] ESCOBAR-MORREALE H F, LUQUE-RAMÍREZ M, SAN MILLÁN J L. The molecular-genetic basis of functional hyperandrogenism and the polycystic ovary syndrome[J]. Endocr Rev, 2005, 26(2):251-282. [10] RAINEY W E, BIRD I M, MASON J I. The NCI-H295 cell line:a pluripotent model for human adrenocortical studies[J]. Mol Cell Endocrinol, 1994, 100(1/2):45-50. [11] SAMANDARI E, KEMPNÁ P, NUOFFER J M, et al. Human adrenal corticocarcinoma NCI-H295R cells produce more androgens than NCI-H295A cells and differ in 3beta-hydroxysteroid dehydrogenase type 2 and 17, 20 lyase activities[J]. J Endocrinol, 2007, 195(3):459-472. [12] HILBERS U, PETERS J, BORNSTEIN S R, et al. Local renin-angiotensin system is involved in K +-induced aldosterone secretion from human adrenocortical NCI-H295 cells[J]. Hypertension, 1999, 33(4):1025-1030. [13] SEWER M B, WATERMAN M R. ACTH modulation of transcription factors responsible for steroid hydroxylase gene expression in the adrenal cortex[J]. Microsc Res Tech, 2003, 61(3):300-307. [14] RAINEY W E, BIRD I M, SAWETAWAN C, et al. Regulation of human adrenal carcinoma cell (NCI-H295) production of C19 steroids[J]. J Clin Endocrinol Metab, 1993, 77(3):731-737. [15] OSKARSSON A, ULLERÅS E, PLANT K E, et al. Steroidogenic gene expression in H295R cells and the human adrenal gland:adrenotoxic effects of lindane in vitro[J]. J Appl Toxicol, 2006, 26(6):484-492. [16] KEMPNÁ P, HIRSCH A, HOFER G, et al. Impact of differential P450c17 phosphorylation by cAMP stimulation and by starvation conditions on enzyme activities and androgen production in NCI-H295R cells[J]. Endocrinology, 2010, 151(8):3686-3696. [17] KEMPNÁ P, MARTI N, UDHANE S, et al. Regulation of androgen biosynthesis-A short review and preliminary results from the hyperandrogenic starvation NCI-H295R cell model[J]. Mol Cell Endocrinol, 2015, 408:124-132. [18] MILLER W L, TEE M K. The post-translational regulation of 17, 20 lyase activity[J]. Mol Cell Endocrinol, 2015, 408:99-106. [19] PINTO C L, MARKEY K, DIX D, et al. Identification of candidate reference chemicals for in vitro steroidogenesis assays[J]. Toxicol In Vitro, 2018, 47:103-119. [20] KARMAUS A L, TOOLE C M, FILER D L, et al. High-throughput screening of chemical effects on steroidogenesis using H295R human adrenocortical carcinoma cells[J]. Toxicol Sci, 2016, 150(2):323-332. [21] HAGGARD D E, KARMAUS A L, MARTIN M T, et al. High-throughput H295R steroidogenesis assay:utility as an alternative and a statistical approach to characterize effects on steroidogenesis[J]. Toxicol Sci, 2018, 162(2):509-534. [22] HAGGARD D E, SETZER R W, JUDSON R S, et al. Development of a prioritization method for chemical-mediated effects on steroidogenesis using an integrated statistical analysis of high-throughput H295R data[J]. Regul Toxicol Pharmacol, 2019, 109:104510. [23] RAO C H V, ZHOU X L, LEI Z M. Functional luteinizing hormone/chorionic gonadotropin receptors in human adrenal cortical H295R cells[J]. Biol Reprod, 2004, 71(2):579-587. [24] LETCHER R J, VAN HOLSTEIJN I, DRENTH H J, et al. Cytotoxicity and aromatase (CYP19) activity modulation by organochlorines in human placental JEG-3 and JAR choriocarcinoma cells[J]. Toxicol Appl Pharmacol, 1999, 160(1):10-20. [25] HECKER M, NEWSTED J L, MURPHY M B, et al. Human adrenocarcinoma (H295R) cells for rapid in vitro determination of effects on steroidogenesis:Hormone production[J]. Toxicol Appl Pharmacol, 2006, 217(1):114-124. [26] HECKER M, HOLLERT H, COOPER R, et al. Erratum to:The OECD validation program of the H295R steroidogenesis assay:Phase 3. Final inter-laboratory validation study[J]. Environ Sci Pollut Res Int, 2018, 25(15):15265-15267. [27] KLINEFELTER G R, HALL P F, EWING L L. Effect of luteinizing hormone deprivation in situ on steroidogenesis of rat Leydig cells purified by a multistep procedure[J]. Biol Reprod, 1987, 36(3):769-783. [28] BOTTERI PRINCIPATO N L, SUAREZ J D, LAWS S C, et al. The use of purified rat Leydig cells complements the H295R screen to detect chemical-induced alterations in testosterone production[J]. Biol Reprod, 2018, 98(2):239-249. [29] KOLLE S N, RAMIREZ T, KAMP H G, et al. A testing strategy for the identification of mammalian, systemic endocrine disruptors with particular focus on steroids[J]. Regul Toxicol Pharmacol, 2012, 63(2):259-278. [30] ZHANG X W, CHANG H, WISEMAN S, et al. Bisphenol A disrupts steroidogenesis in human H295R cells[J]. Toxicol Sci, 2011, 121(2):320-327. [31] HADRUP N, TAXVIG C, PEDERSEN M, et al. Concentration addition, independent action and generalized concentration addition models for mixture effect prediction of sex hormone synthesis in vitro[J]. PLoS One, 2013, 8(8):e70490. [32] GOLDINGER D M, DEMIERRE A L, ZOLLER O, et al. Endocrine activity of alternatives to BPA found in thermal paper in Switzerland[J]. Regul Toxicol Pharmacol, 2015, 71(3):453-462. [33] WANG S, RIJK J C, BESSELINK H T, et al. Extending an in vitro panel for estrogenicity testing:the added value of bioassays for measuring antiandrogenic activities and effects on steroidogenesis[J]. Toxicol Sci, 2014, 141(1):78-89. [34] AKINGBEMI B T, SOTTAS C M, KOULOVA A I, et al. Inhibition of testicular steroidogenesis by the xenoestrogen bisphenol A is associated with reduced pituitary luteinizing hormone secretion and decreased steroidogenic enzyme gene expression in rat Leydig cells[J]. Endocrinology, 2004, 145(2):592-603. |