[1] ZHENG X H, LU L X, LI X Z, et al. Quantification of Epstein-Barr virus DNA load in nasopharyngeal brushing samples in the diagnosis of nasopharyngeal carcinoma in southern China[J]. Cancer Sci, 2015, 106(9):1196-1201. [2] FUNG S Y, LAM J W, CHAN K C. Clinical utility of circulating Epstein-Barr virus DNA analysis for the management of nasopharyngeal carcinoma[J]. Chin Clin Oncol, 2016, 5(2):18. [3] LO A K, LUNG R W, DAWSON C W, et al. Activation of sterol regulatory element-binding protein 1(SREBP1)-mediated lipogenesis by the Epstein-Barr virus-encoded latent membrane protein 1(LMP1) promotes cell proliferation and progression of nasopharyngeal carcinoma[J]. J Pathol, 2018, 246(2):180-190. [4] ZHENG X, WANG J, WEI L Y, et al. Epstein-Barr virus miR-BART5-3p inhibits p53 expression[J]. J Virol, 2018, 92(23):e01022. [5] FAN C, TANG Y, WANG J, et al. The emerging role of Epstein-Barr virus encoded microRNAs in nasopharyngeal carcinoma[J]. J Cancer, 2018, 9(16):2852-2864. [6] WONG T S, CHEN S, ZHANG M J, et al. Epstein-Barr virus-encoded microRNA BART7 downregulates major histo-compatibility complex class I chain-related peptide A and reduces the cytotoxicity of natural killer cells to nasopharyngeal carcinoma[J]. Oncol Lett, 2018, 16(3):2887-2892. [7] MA B B Y, CHEN Y P, HUI E P, et al. Recent advances in the development of biomarkers and chemoradiotherapeutic approaches for nasopharyngeal carcinoma[J]. Am Soc Clin Oncol Educ Book, 2020, 40:1-11. [8] BAKKALCI D, JIA Y, WINTER J R, et al. Risk factors for Epstein Barr virus-associated cancers:a systematic review, critical appraisal, and mapping of the epidemiological evidence[J]. J Glob Health, 2020, 10(1):010405. [9] OUYANG H, ZHANG K, FOX-WALSH K, et al. The RNA binding protein EWS is broadly involved in the regulation of pri-miRNA processing in mammalian cells[J]. Nucleic Acids Res, 2017, 45(21):12481-12495. [10] TECHASINTANA P, ELLIS J S, GLASCOCK J, et al. The RNA-binding protein HuR posttranscriptionally regulates IL-2 homeostasis and CD4(+) Th2 differentiation[J]. Immunohorizons, 2017, 1(6):109-123. [11] HUA W F, ZHONG Q, XIA T L, et al. RBM24 suppresses cancer progression by upregulating miR-25 to target MALAT1 in nasopharyngeal carcinoma[J]. Cell Death Dis, 2016, 7(9):e2352. [12] MA D D, YUAN L L, LIN L Q. LncRNA HOTAIR contributes to the tumorigenesis of nasopharyngeal carcinoma via up-regulating FASN[J]. Eur Rev Med Pharmacol Sci, 2017, 21(22):5143-5152. [13] NIE Y, LIU X, QU S, et al. Long non-coding RNA HOTAIR is an independent prognostic marker for nasopharyngeal carcinoma progression and survival[J]. Cancer Sci, 2013, 104(4):458-464. [14] AIELLO A, BACCI L, RE A, et al. MALAT1 and HOTAIR long non-coding RNAs play opposite role in estrogen-mediated transcriptional regulation in prostate cancer cells[J]. Sci Rep, 2016, 6:38414. [15] WU L, LI C, PAN L. Nasopharyngeal carcinoma:A review of current updates[J]. Exp Ther Med, 2018, 15(4):3687-3692. [16] PAUL P, DEKA H, MALAKAR A K, et al. Nasopharyngeal carcinoma:understanding its molecular biology at a fine scale[J]. Eur J Cancer Prev, 2018, 27(1):33-41. [17] ZHANG T, LIN Y, LIU J, et al. Rbm24 regulates alternative splicing switch in embryonic stem cell cardiac lineage differentiation[J]. Stem Cells, 2016, 34(7):1776-1789. [18] LIN Y, TAN K T, LIU J, et al. Global profiling of Rbm24 bound RNAs uncovers a multi-tasking RNA binding protein[J]. Int J Biochem Cell Biol, 2018, 94:10-21. [19] ZHANG M, ZHANG Y, XU E, et al. Rbm24, a target of p53, is necessary for proper expression of p53 and heart development[J]. Cell Death Differ, 2018, 25(6):1118-1130. [20] LIU J, KONG X, ZHANG M, et al. RNA binding protein 24 deletion disrupts global alternative splicing and causes dilated cardiomyopathy[J]. Protein Cell, 2019, 10(6):405-416. [21] JIANG Y, ZHANG M, QIAN Y, et al. Rbm24, an RNA-binding protein and a target of p53, regulates p21 expression via mRNA stability[J]. J Biol Chem, 2014, 289(6):3164-3175. [22] XU E, ZHANG J, ZHANG M, et al. RNA-binding protein RBM24 regulates p63 expression via mRNA stability[J]. Mol Cancer Res, 2014, 12(3):359-369. [23] TSAO S W, WANG X, LIU Y, et al. Establishment of two immortalized nasopharyngeal epithelial cell lines using SV40 large T and HPV16E6/E7 viral oncogenes[J]. Biochim Biophys Acta, 2002, 1590(1/2/3):150-158. [24] YIP Y L, PANG P S, DENG W, et al. Efficient immortalization of primary nasopharyngeal epithelial cells for EBV infection study[J]. PLoS One, 2013, 8(10):e78395. [25] LI H M, MAN C, JIN Y, et al. Molecular and cytogenetic changes involved in the immortalization of nasopharyngeal epithelial cells by telomerase[J]. Int J Cancer, 2006, 119(7):1567-1576. [26] HAN L, ZHANG H C, LI L, et al. Downregulation of long noncoding RNA HOTAIR and EZH2 induces apoptosis and inhibits proliferation, invasion, and migration of human breast cancer cells[J]. Cancer Biother Radiopharm, 2018, 33(6):241-251. [27] GUPTA R A, SHAH N, WANG K C, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J]. Nature, 2010, 464(7291):1071-1076. [28] CHANG L, GUO R, YUAN Z, et al. lncRNA HOTAIR regulates CCND1 and CCND2 expression by sponging miR-206 in ovarian cancer[J]. Cell Physiol Biochem, 2018, 49(4):1289-1303. [29] LOEWEN G, JAYAWICKRAMARAJAH J, ZHUO Y, et al. Functions of lncRNA HOTAIR in lung cancer[J]. J Hematol Oncol, 2014, 7:90. [30] MERCER T R, GERHARDT D J, DINGER M E, et al. Targeted RNA sequencing reveals the deep complexity of the human transcriptome[J]. Nat Biotechnol, 2011, 30(1):99-104. [31] TSAI M C, MANOR O, WAN Y, et al. Long noncoding RNA as modular scaffold of histone modification complexes[J]. Science, 2010, 329(5992):689-693. [32] LIU Y W, SUN M, XIA R, et al. LincHOTAIR epigenetically silences miR34a by binding to PRC2 to promote the epithelial-to-mesenchymal transition in human gastric cancer[J]. Cell Death Dis, 2015, 6:e1802. |