[1] IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures[J]. IARC Monogr Eval Carcinog Risks Hum, 2010, 92:1-853. [2] LI C Y, SCHUETZ J D, NAREN A P. Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia:implications for lung cancer[J]. Cancer Lett, 2010, 292(2):246-253. [3] HECHT S S. Lung carcinogenesis by tobacco smoke[J]. Int J Cancer, 2012, 131(12):2724-2732. [4] STRZELAK A, RATAJCZAK A, ADAMIEC A, et al. Tobacco smoke induces and alters immune responses in the lung triggering inflammation, allergy, asthma and other lung diseases:a mechanistic review[J]. Int J Environ Res Public Health, 2018, 15(5):E1033. [5] SHEN Y F, WOLKOWICZ M J, KOTOVA T, et al. Transcriptome sequencing reveals e-cigarette vapor and mainstream-smoke from tobacco cigarettes activate different gene expression profiles in human bronchial epithelial cells[J]. Sci Rep, 2016, 6:23984. [6] ZAVALA J, GREENAN R, KRANTZ Q T, et al. Regulating temperature and relative humidity in air-liquid interface in vitro systems eliminates cytotoxicity resulting from control air exposures[J]. Toxicol Res (Camb), 2017, 6(4):448-459. [7] THORNE D, DALRYMPLE A, DILLON D, et al. A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test[J]. Inhal Toxicol, 2015, 27(12):629-640. [8] OKUWA K, TANAKA M, FUKANO Y, et al. In vitro micronucleus assay for cigarette smoke using a whole smoke exposure system:a comparison of smoking regimens[J]. Exp Toxicol Pathol, 2010, 62(4):433-440. [9] ZHOU G J, XIAO W Q, XU C Y, et al. Chemical constituents of tobacco smoke induce the production of interleukin-8 in human bronchial epithelium, 16HBE cells[J]. Tob Induc Dis, 2016, 14:24. [10] DONG P, FU X, WANG X, et al. Protective effects of sesaminol on BEAS-2B cells impaired by cigarette smoke extract[J]. Cell Biochem Biophys, 2015, 71(2):1207-1213. [11] SAKHATSKYY P, GABINO MIRANDA G A, NEWTON J, et al. Cigarette smoke-induced lung endothelial apoptosis and emphysema are associated with impairment of FAK and eIF2α[J]. Microvasc Res, 2014, 94:80-89. [12] HUSARI A, SHIHADEH A, TALIH S, et al. Acute exposure to electronic and combustible cigarette aerosols:effects in an animal model and in human alveolar cells[J]. Nicotine Tob Res, 2016, 18(5):613-619. [13] POUWELS S D, ZIJLSTRA G J, VAN DER TOORN M, et al. Cigarette smoke-induced necroptosis and DAMP release trigger neutrophilic airway inflammation in mice[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 310(4):L377-L386. [14] VAN DER TOORN M, SLEBOS D J, DE BRUIN H G, et al. Critical role of aldehydes in cigarette smoke-induced acute airway inflammation[J]. Respir Res, 2013, 14:45. [15] ZHONG M T, HUANG Z J, WANG L, et al. Malignant transformation of human bronchial epithelial cells induced by arsenic through STAT3/miR-301a/SMAD4 loop[J]. Sci Rep, 2018, 8(1):13291. [16] PROULX L I, GAUDREAULT M, TURMEL V, et al. 4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone, a component of tobacco smoke, modulates mediator release from human bronchial and alveolar epithelial cells[J]. Clin Exp Immunol, 2005, 140(1):46-53. [17] YUAN L L, LV B, ZHA J M, et al. Benzo[a]pyrene induced p53-mediated cell cycle arrest, DNA repair, and apoptosis pathways in Chinese rare minnow (Gobiocypris rarus)[J]. Environ Toxicol, 2017, 32(3):979-988. [18] LU J Y, ZHANG M, HUANG Z Y, et al. SIRT1 in B[a]P-induced lung tumorigenesis[J]. Oncotarget, 2015, 6(29):27113-27129. [19] 杨琼. 中、低焦油卷烟主流烟气成分对比剖析研究[D]. 长沙:湖南师范大学, 2014. [20] 舒俊生, 姚忠达, 郭东锋. 烤烟常规化学成分与烟气成分关系分析[J]. 安徽农业大学学报, 2013, 40(1):149-154. [21] FREDENBURGH L E, KRAFT B D, HESS D R, et al. Effects of inhaled CO administration on acute lung injury in baboons with pneumococcal pneumonia[J]. Am J Physiol Lung Cell Mol Physiol, 2015, 309(8):L834-L846. [22] 郭淑雯, 张峻松, 王锴, 等. 不同类型和焦油量的卷烟主流烟气中羰基化合物释放量的研究[J]. 甘肃科学学报, 2017, 29(3):121-124. |