[1] BAZAN J G, CHANG P, BALOG R, et al. Novel human radiation exposure biomarker panel applicable for population triage[J]. Int J Radiat Oncol Biol Phys, 2014, 90(3):612-619. [2] CHAUDHRY M A. Biomarkers for human radiation exposure[J]. J Biomed Sci, 2008, 15(5):557-563. [3] LAIAKIS E C. Metabolomic applications in radiation biodosimetry[M]//High-Throughput Metabolomics. New York, NY:Springer New York, 2019:391-402. [4] International Atomic Energy Agency. Cytogenetic dosimetry:Applications in preparedness for and response to radiation emergencies[R]. Vienna:EPR-biodosimetry, 2011:68-74. [5] ROTHKAMM K, BEINKE C, ROMM H, et al. Comparison of established and emerging biodosimetry assays[J]. Radiat Res, 2013, 180(2):111-119. [6] CASADEI L, VALERIO M, MANETTI C. Metabolomics:challenges and opportunities in systems biology studies[J]. Methods Mol Biol, 2018, 1702:327-336. [7] JOHNSON C H, GONZALEZ F J. Challenges and opportunities of metabolomics[J]. J Cell Physiol, 2012, 227(8):2975-2981. [8] WANT E J, WILSON I D, GIKA H, et al. Global metabolic profiling procedures for urine using UPLC-MS[J]. Nat Protoc, 2010, 5(6):1005-1018. [9] GOLLA S, GOLLA J P, KRAUSZ K W, et al. Metabolomic analysis of mice exposed to Gamma radiation reveals a systemic understanding of total-body exposure[J]. Radiat Res, 2017, 187(5):612-629. [10] MAK T D, TYBURSKI J B, KRAUSZ K W, et al. Exposure to ionizing radiation reveals global dose- and time-dependent changes in the urinary metabolome of rat[J]. Metabolomics, 2015, 11(5):1082-1094. [11] TANG X X, ZHENG M C, ZHANG Y Y, et al. Estimation value of plasma amino acid target analysis to the acute radiation injury early triage in the rat model[J]. Metabolomics, 2013, 9(4):853-863. [12] CHEEMA A K, MEHTA K Y, RAJAGOPAL M U, et al. Metabolomic studies of tissue injury in nonhuman Primates exposed to Gamma-radiation[J]. Int J Mol Sci, 2019, 20(13):E3360. [13] LAIAKIS E C, NISHITA D, BUJOLD K, et al. Salivary metabolomics of total body irradiated nonhuman Primates reveals long-term normal tissue responses to radiation[J]. Int J Radiat Oncol Biol Phys, 2019, 105(4):843-851. [14] AYDıN A F,ÇOBAN J, DOǦAN-EKICI I, et al. Carnosine and taurine treatments diminished brain oxidative stress and apoptosis in D-galactose aging model[J]. Metab Brain Dis, 2016, 31(2):337-345. [15] SEIDMAN L J, SHAPIRO D I, STONE W S, et al. Association of neurocognition with transition to psychosis:baseline functioning in the second phase of the north American prodrome longitudinal study[J]. JAMA Psychiatry, 2016, 73(12):1239-1248. [16] VON SCHÖNFELS W, PATSENKER E, FAHRNER R, et al. Metabolomic tissue signature in human non-alcoholic fatty liver disease identifies protective candidate metabolites[J]. Liver Int, 2015, 35(1):207-214. [17] BASARANOGLU M, BASARANOGLU G, SENTüRK H. From fatty liver to fibrosis:a tale of "second hit"[J]. World J Gastroenterol, 2013, 19(8):1158-1165. [18] SCHWARCZ R, BRUNO J P, MUCHOWSKI P J, et al. Kynurenines in the mammalian brain:when physiology meets pathology[J]. Nat Rev Neurosci, 2012, 13(7):465-477. [19] PATTI G J, YANES O, SIUZDAK G. Innovation:Metabolomics:the apogee of the omics trilogy[J]. Nat Rev Mol Cell Biol, 2012, 13(4):263-269. [20] KULTOVA G, TICHY A, REHULKOVA H, et al. The hunt for radiation biomarkers:current situation[J]. Int J Radiat Biol, 2020, 96(3):370382. |