[1] XU P, CHEN Y F, YE X J. Haze, air pollution, and health in China[J]. Lancet, 2013, 382(9910):2067. [2] BURSTYN I, BOFFETTA P, HEEDERIK D, et al. Mortality from obstructive lung diseases and exposure to polycyclic aromatic hydrocarbons among asphalt workers[J]. Am J Epidemiol, 2003, 158(5):468-478. [3] WANG J, CHEN S J, TIAN M, et al. Inhalation cancer risk associated with exposure to complex polycyclic aromatic hydrocarbon mixtures in an electronic waste and urban area in South China[J]. Environ Sci Technol, 2012, 46(17):9745-9752. [4] PAUL FRIEDMAN K, WATT E D, HORNUNG M W, et al. Tiered high-throughput screening approach to identify thyroperoxidase inhibitors within the ToxCast phase I and Ⅱ chemical libraries[J]. Toxicol Sci, 2016, 151(1):160-180. [5] BHHATARAI B, WILSON D M, PRICE P S, et al. Evaluation of OASIS QSAR models using ToxCastTM in vitro estrogen and androgen receptor binding data and application in an integrated endocrine screening approach[J]. Environ Health Perspect, 2016, 124(9):1453-1461. [6] MARTIN M T, KNUDSEN T B, REIF D M, et al. Predictive model of rat reproductive toxicity from ToxCast high throughput screening[J]. Biol Reprod, 2011, 85(2):327-339. [7] CHOU W C, HSU C Y, HO C C, et al. Development of an in vitro-based risk assessment framework for predicting ambient particulate matter-bound polycyclic aromatic hydrocarbon-activated toxicity pathways[J]. Environ Sci Technol, 2017, 51(24):14262-14272. [8] MOORTHY B, CHU C, CARLIN D J. Polycyclic aromatic hydrocarbons:from metabolism to lung cancer[J]. Toxicol Sci, 2015, 145(1):5-15. [9] SØRENSEN M, AUTRUP H, MØLLER P, et al. Linking exposure to environmental pollutants with biological effects[J]. Mutat Res, 2003, 544(2/3):255-271. [10] SCHAUER C, NIESSNER R, PÖSCHL U. Polycyclic aromatic hydrocarbons in urban air particulate matter:decadal and seasonal trends, chemical degradation, and sampling artifacts[J]. Environ Sci Technol, 2003, 37(13):2861-2868. [11] NEBERT D W, DALTON T P, OKEY A B, et al. Role of aryl hydrocarbon receptor-mediated induction of the CYP1 enzymes in environmental toxicity and cancer[J]. J Biol Chem, 2004, 279(23):23847-23850. [12] ANDRYSÍK Z, VONDRÁČEK J, MARVANOVÁ S, et al. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture:the role of polycyclic aromatic hydrocarbons[J]. Mutat Res, 2011, 714(1/2):53-62. [13] BUDANOV A V. The role of tumor suppressor p53 in the antioxidant defense and metabolism[J]. Subcell Biochem, 2014, 85:337-358. [14] MORDUKHOVICH I, ROSSNER P Jr, TERRY M B, et al. Associations between polycyclic aromatic hydrocarbon-related exposures and p53 mutations in breast tumors[J]. Environ Health Perspect, 2010, 118(4):511-518. [15] MA Q. Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53:401-426. [16] LAWRENCE T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harb Perspect Biol, 2009, 1(6):a001651. [17] GUARNIERI M, BALMES J R. Outdoor air pollution and asthma[J]. Lancet, 2014, 383(9928):1581-1592. [18] VALAVANIDIS A, VLACHOGIANNI T, FIOTAKIS K, et al. Pulmonary oxidative stress, inflammation and cancer:respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms[J]. Int J Environ Res Public Health, 2013, 10(9):3886-3907. [19] NEAVIN D R, LIU D, RAY B, et al. The role of the aryl hydrocarbon receptor (AHR) in immune and inflammatory diseases[J]. Int J Mol Sci, 2018, 19(12):E3851. |