[1] SULLIVAN J M, PRASANNA P G, GRACE M B, et al. Assessment of biodosimetry methods for a mass-casualty radiological incident:medical response and management considerations[J]. Health Phys, 2013, 105(6):540-554.; [2] CHEN B J, DEOLIVEIRA D, SPASOJEVIC I, et al. Growth hormone mitigates against lethal irradiation and enhances hematologic and immune recovery in mice and nonhuman Primates[J]. PLoS One, 2010, 5(6):e11056. DOI:10.1371/journal.pone.0011056.; [3] FARESE A M, COHEN M V, KATZ B P, et al. Filgrastim improves survival in lethally irradiated nonhuman Primates[J]. Radiat Res, 2013, 179(1):89-100.; [4] LACOMBE J, S M, AMUNDSON S A, et al. Candidate gene biodosimetry markers of exposure to external ionizing radiation in human blood:A systematic review[J]. PLoS One, 2018, 13(6):e0198851. DOI:10.1371/journal.pone.0198851.; [5] SPROULL M, CAMPHAUSEN K. State-of-the-art advances in radiation biodosimetry for mass casualty events involving radiation exposure[J]. Radiat Res, 2016, 186(5):423-435.; [6] MANNING G, MACAEVA E, MAJEWSKI M, et al. Comparable dose estimates of blinded whole blood samples are obtained independently of culture conditions and analytical approaches. Second RENEB gene expression study[J]. Int J Radiat Biol, 2017, 93(1):87-98.; [7] LI S, ZHANG Q Z, ZHANG D Q, et al. GDF-15 gene expression alterations in human lymphoblastoid cells and peripheral blood lymphocytes following exposure to ionizing radiation[J]. Mol Med Rep, 2017, 15(6):3599-3606.; [8] LI S, LU X, FENG J B, et al. Identification and validation of candidate radiation-responsive genes for human biodosimetry[J]. Biomed Environ Sci, 2017, 30(11):834-840.; [9] LIU Q J, ZHANG D Q, ZHANG Q Z, et al. Dose-effect of ionizing radiation-induced PIG3 gene expression alteration in human lymphoblastoid AHH-1 cells and human peripheral blood lymphocytes[J]. Int J Radiat Biol, 2015, 91(1):71-80.; [10] BRZóSKA K, KRUSZEWSKI M. Toward the development of transcriptional biodosimetry for the identification of irradiated individuals and assessment of absorbed radiation dose[J]. Radiat Environ Biophys, 2015, 54(3):353-363.; [11] MACAEVA E, MYSARA M, DE VOS W H, et al. Gene expression-based biodosimetry for radiological incidents:assessment of dose and time after radiation exposure[J]. Int J Radiat Biol, 2019, 95(1):64-75.; [12] KEAM S P, GULATI T, GAMELL C, et al. Biodosimetric transcriptional and proteomic changes are conserved in irradiated human tissue[J]. Radiat Environ Biophys, 2018, 57(3):241-249.; [13] BALOG R P, CHANG P, JAVITZ H S, et al. Development of a point-of-care radiation biodosimeter:studies using novel protein biomarker panels in non-human Primates[J]. Int J Radiat Biol, 2018:1-12.; [14] MANNING G, KABACIK S, FINNON P, et al. High and low dose responses of transcriptional biomarkers in ex vivo X-irradiated human blood[J]. Int J Radiat Biol, 2013, 89(7):512-522.; [15] AGBENYEGAH S, ABEND M, ATKINSON M J, et al. Impact of inter-individual variance in the expression of a radiation-responsive gene panel used for triage[J]. Radiat Res, 2018, 190(3):226-235.; [16] WHITNEY A R, DIEHN M, POPPER S J, et al. Individuality and variation in gene expression patterns in human blood[J]. Proc Natl Acad Sci USA, 2003, 100(4):1896-1901.; [17] CORREA C R, CHEUNG V G. Genetic variation in radiation-induced expression phenotypes[J]. Am J Hum Genet, 2004, 75(5):885-890.; [18] BAHREYNI-TOOSSI M T, VOSOUGHI H, AZIMIAN H, et al. In vivo exposure effects of 99mTc-methoxyisobutylisonitrile on the FDXR and XPA genes expression in human peripheral blood lymphocytes[J]. Asia Ocean J Nucl Med Biol, 2018, 6(1):32-40.; [19] O'BRIEN G, CRUZ-GARCIA L, MAJEWSKI M, et al. FDXR is a biomarker of radiation exposure in vivo[J]. Sci Rep, 2018, 8(1):684.; [20] PAUL S, BARKER C A, TURNER H C, et al. Prediction of in vivo radiation dose status in radiotherapy patients using ex vivo and in vivo gene expression signatures[J]. Radiat Res, 2011, 175(3):257-265.; [21] KIM S J, DIX D J, THOMPSON K E, et al. Effects of storage, RNA extraction, genechip type, and donor sex on gene expression profiling of human whole blood[J]. Clin Chem, 2007, 53(6):1038-1045.; [22] KOTURBASH I, KUTANZI K, HENDRICKSON K, et al. Radiation-induced bystander effects in vivo are sex specific[J]. Mutat Res Mol Mech Mutagen, 2008, 642(1/2):28-36.; [23] RAICHE J, RODRIGUEZ-JUAREZ R, POGRIBNY I, et al. Sex- and tissue-specific expression of maintenance and de novo DNA methyltransferases upon low dose X-irradiation in mice[J]. Biochem Biophys Res Commun, 2004, 325(1):39-47.; [24] TAVAKOLI H, MANOOCHEHRI M, MODARRES MOSALLA S M, et al. Dose-dependent and gender-related radiation-induced transcription alterations of Gadd45a and Ier5 in human lymphocytes exposed to gamma ray emitted by (60)Co[J]. Radiat Prot Dosimetry, 2013, 154(1):37-44.; [25] ABEND M, BADIE C, QUINTENS R, et al. Examining radiation-induced in vivo and in vitro gene expression changes of the peripheral blood in different laboratories for biodosimetry purposes:first RENEB gene expression study[J]. Radiat Res, 2016, 185(2):109-123.; [24] BADIE C, HESS J, ZITZELSBERGER H, et al. Established and emerging biomarkers of radiation exposure[J]. Clin Oncol (R Coll Radiol), 2016, 28(10):619-621.; [26] BADIE C, KABACIK S, BALAGURUNATHAN Y, et al. Laboratory intercomparison of gene expression assays[J]. Radiat Res, 2013, 180(2):138-148.; [27] KAJIMURA J, LYNCH H E, GEYER S, et al. Radiation- and age-associated changes in peripheral blood dendritic cell populations among aging atomic bomb survivors in Japan[J]. Radiat Res, 2018, 189(1):84-94. |