[1] LUSHCHAK V I. Free radicals, reactive oxygen species, oxidative stress and its classification[J]. Chem Biol Interact, 2014,224:164-175. [2] KUMAR V, GILL K D. Oxidative stress and mitochondrial dysfunction in aluminium neurotoxicity and its amelioration:a review[J]. Neurotoxicology,2014,41:154-166. [3] KUMAR V, BAL A, GILL K D. Impairment of mitochondrial energy metabolism in different regions of rat brain following chronic exposure to aluminium[J]. Brain Res, 2008, 1232:94-103. [4] WANG J,XIONG S,XIE C,et al. Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease[J]. J Neurochem,2005,93(4):953-962. [5] WEISMAN L, JO D G, SORENSEN M M, et al. Defective DNA base excision repair in brain from individuals with Alzheimer's disease and amnestic mild cognitive impairment[J]. Nucleic Acids Res,2007,35(16):5545-5555. [6] NUNOMURA A,PERRY G,ALIEV G,et al. Oxidative damage is the earliest event in Alzheimer disease[J]. J Neuropathol Exp Neurol,2001,60(8):759-767. [7] SWERDLOW R H, PARKS J K, CASSARION D S, et al. Cybrids in Alzheimer's disease:a cellular model of the disease?[J]. Neurology,1997,49(4):918-925. [8] GATT A P, DUNCAN O F, ATTEMS J, et al. Dementia in Parkinson's disease is associated with enhanced mitochondrial complex I deficiency[J]. Mov Disord,2016,31(3):352-359. [9] CANNON J R, GREENAMYRE J T. Gene-environment interactions in Parkinson's disease:specific evidence in humans and mammalian models[J]. Neurobiol Disease,2013,57:38-46. [10] SCHAPIRA A H. Mitochondria in the aetiology and pathogenesis of Parkinson's disease[J]. Lancet Neurol,2008,7(1):97-109. [11] DABROWSKA M, JUZWA W, KRZYZOSIAK W J, et al. Precise excision of the CAG tract from the Huntingtin gene by Cas9 nickases[J]. Front Neurosci,2018,12:75. [12] BUTTERFIELD D A, HOWARD B J, LAFONTAINE M A. Brain oxidative stress in animal models of accelerated aging and the age-related neurodegenerative disorders, Alzheimer's disease and Huntington's disease[J]. Curr Med Chem,2001,8(7):815-828. [13] LOU D I, MCBEE R M, LE U Q, et al. Rapid evolution of BRCA1 and BRCA2 in humans and other primates[J]. BMC Evol Biol,2014,14:155. [14] ORBAN T I, OLAH E. Emerging roles of BRCA1 alternative splicing[J]. Mol Pathol,2003,56(4):191-197. [15] TAKAOKA M, MIKI Y. BRCA1 gene:function and deficiency[J]. Int J Clin Oncol,2018,23(1):36-44. [16] PRAKASH R, ZHANG Y, FENG W, et al. Homologous recombination and human health:the roles of BRCA1,BRCA2, and associated proteins[J]. Cold Spring Harb Perspect Biol, 2015,7(4):a016600. [17] MOYNAHAN M E, JASIN M. Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis[J]. Nat Rev Mol Cell Boil,2010,11(3):196-207. [18] 赵锡鹏,张凤梅,凤志慧. 乳腺癌易感基因1在DNA损伤修复中作用的研究进展[J]. 中国药理学与毒理学杂志,2014,28(4):606-611 [19] DENG C X. BRCA1:cell cycle checkpoint, genetic instability, DNA damage response and cancer evolution[J]. Nucleic Acids Res,2006,34(5):1416-1426. [20] ANDERSON S, BANKIER A T, BARRELL B G, et al. Sequence and organization of the human mitochondrial genome[J]. Nature,1981,290(5806):457-465. [21] PAPRATES MORI M, DE SOUZA-PINTO N C. Role of mitochondrial dysfunction in the pathophysiology of DNA repair disorders[J]. Cell Biol Int,2018,42(6):643-650. [22] CHATTERIEE J, NAIRY R K, LANGHNOJA J, et al. ER stress and genomic instability induced by gamma radiation in mice primary cultured glial cells[J]. Metab Brain Dis, 2018, 33(3):855-868. [23] MERSCH J, JACKSON M A, PARK M, et al. Cancers associated with BRCA1 and BRCA2 mutations other than breast and ovarian[J]. Cancer,2015,121(2):269-275. [24] SILVER D P,LIVINGSTON D M. Mechanisms of BRCA1 tumor suppression[J]. Cancer Discov,2012,2(8):679-684. [25] SAHA T,RJH J K,ROY R,et al. Transcriptional regulation of the base excision repair pathway by BRCA1[J]. J Biol Chem, 2010,285(25):19092-19105. [26] LI M, CHEN Q, YU X. Chemopreventive effects of ROS targeting in a murine model of BRCA1-deficient breast cancer[J]. Cancer Res,2017,77(2):448-458. [27] YUN M H, HIOM K. CtIP-BRCA1 modulates the choice of DNA double-strand-break repair pathway throughout the cell cycle[J]. Nature,2009,459(7245):460-463. [28] CHAPMAN J R, TAYLOR M R, BOULTON S J. Playing the end game:DNA double-strand break repair pathway choice[J]. Mol Cell,2012,47(4):497-510. [29] TING N S,LEE W H. The DNA double-strand break response pathway:becoming more BRCAish than ever[J]. DNA Repair, 2004,3(8/9):935-944. [30] ITOH K, TONG K I, YAMAMOTO M. Molecular mechanism activating Nrf2-Keap1 pathway in regulation of adaptive response to electrophiles[J]. Free Radic Biol Med, 2004, 36(10):1208-1213. [31] GORRINI C, BANIASADI P S, HARRIS I S, et al. BRCA1 interacts with Nrf2 to regulate antioxidant signaling and cell survival[J]. J Exp Med,2013,210(8):1529-1544. [32] FAN S, MENG Q, SAHA T, et al. Low concentrations of diindolylmethane, a metabolite of indole-3-carbinol, protect against oxidative stress in a BRCA1-dependent manner[J]. Cancer Res,2009,69(15):6083-6091. [33] WEBERPALS J I, CLARK-KNOWLES K V, VANDERHYDEN B C. Sporadic epithelial ovarian cancer:clinical relevance of BRCA1 inhibition in the DNA damage and repair pathway[J]. J Clin Oncol,2008,26(19):3259-3267. [34] LITMAN R, GUPTA R, BROSH R M, et al. BRCA1-FA pathway as a target for anti-tumor drugs[J]. Anticancer Agents Med Chem,2008,8(4):426-430. [35] STARITA L M, PARVIN J D. Substrates of the BRCA1-dependent ubiquitin ligase[J]. Cancer Biol Ther,2006,5(2):137-141. [36] FEILOTTER H E, MITCHEL C, UY P, et al. BRCA1 haploinsufficiency leads to altered expression of genes involved in cellular proliferation and development[J]. PLoS One, 2014, 9(6):e100068. [37] SUBERBIELLE E, DJUKIC B, EVANS M, et al. DNA repair factor BRCA1 depletion occurs in Alzheimer brains and impairs cognitive function in mice[J]. Nat Commun,2015,6:8897. [38] FARASANI A,DARBRE P D. Effects of aluminium chloride and aluminium chlorohydrate on DNA repair in MCF10A immortalised non-transformed human breast epithelial cells[J]. J Inorg Biochem, 2015,152:186-189. [39] NAKANISHI A,MINAMI A,KITAQISHI Y,et al. BRCA1 and p53 tumor suppressor molecules in Alzheimer's disease[J]. Int J Mol Sci,2015,16(2):2879-2892. [40] MANO T,NAGATA K,NONAKA T. Neuron-specific methylome analysis reveals epigenetic regulation and tau-related dysfunction of BRCA1 in Alzheimer's disease[J]. Proc Natl Acad Sci U S A, 2017,114(45):E9645-E9654. [41] WEZKY M, ZEKANOWSKI C. Role of BRCA1 in neuronal death in Alzheimer's disease[J]. ACS Chem Neurosci, 2018, 9(5):870-872. |