[1] BARENHOLZ Y. Doxil®-The first FDA-approved nano-drug:Lessons learned[J]. J Control Release,2012,160(2):117-134. [2] WANG L,JING H,CHEN H,et al. Exerting enhanced permeability and retention effect driven delivery by ultrafine iron oxide nanoparticles with T1-T2 switchable magnetic resonance imaging contrast[J]. Acs Nano,2017. 11(5):4582-4592. [3] D'ARIENZO A,SCAGLIONE G,BENNATO R,et al. The prognostic value,in active ulcerative colitis,of an increased intensity of colonic perivisceral fat signal on magnetic resonance imaging with ferumoxil[J]. Am J Gastroenterol,2001,96(2):481-486. [4] FU T,KONG Q,SHENG H,et al. Value of functionalized superparamagnetic iron oxide nanoparticles in the diagnosis and treatment of acute temporal lobe epilepsy on MRI[J]. Neural Plast,2016,2016:2412958. doi:10.1155/2016/2412958. [5] SHI D,MI G,BHATTACHARYA S,et al. Optimizing superparamagnetic iron oxide nanoparticles as drug carriers using an in vitro blood-brain barrier model[J]. Int J Nanomedicine,2016,11:5371-5379. [6] KONCZOL M,WEISS A,STANGENBERG E,et al. Cell-cycle changes and oxidative stress response to magnetite in A549 human lung cells[J]. Chem Res Toxicol,2013,26(5):693-702. [7] WATANABE M,YONEDA M,MOROHASHI A,et al. Effects of Fe3O4 magnetic nanoparticles on A549 cells[J]. Int J Mol Sci,2013,14(8):15546-15560. [8] 淡墨,赵继云,齐乃松,等. 不同表面修饰的纳米氧化铁颗粒诱导胶质瘤细胞凋亡的差异[J]. 中国新药杂志,2016(24):2887-2892. [9] 文海若,毛志慧,耿兴超,等. 人源HepaRG肝细胞毒性与遗传毒性高通量筛选方法的初步建立[J]. 药物评价研究,2017,40(11):1550-1558. [10] 文海若,淡墨,齐乃松,等. 多细胞系胞质分裂阻滞微核细胞组学试验法的建立与应用[J]. 癌变·畸变·突变,2015,27(4):304-308. [11] GUPTA A K,GUPTA M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications[J]. Biomaterials,2005,26(18):3995-4021. [12] PAOLINI A,GUARCH C P,RAMOS-LOPEZ D,et al. Rhamnose-coated superparamagnetic iron-oxide nano-particles:an evaluation of their in vitro cytotoxicity,genotoxicity and carcinogenicity[J]. J Appl Toxicol,2016,36(4):510-520. [13] MALVINDI M A,DE MATTEIS V,GALEONE A,et al. Toxicity assessment of silica coated iron oxide nanoparticles and biocompatibility improvement by surface engineering[J]. PLoS One,2014,9(1):e85835. [14] DE LIMA R,OLIVERIA J L,MURAKAMI P S K,et al. Iron oxide nanoparticles show no toxicity in the comet assay in lymphocytes:A promising vehicle as a nitric oxide releasing nanocarrier in biomedical applications[C]. J Phys:Conf Ser,2013,429:1-8. [15] HARRIS G,PALOSAARI T,MAGDOLENOVA Z,et al. Iron oxide nanoparticle toxicity testing using high throughput analysis and high content imaging[J]. Nanotoxicology,2015,9(Sup1):87-94. [16] VERMA A,STELLACCI F. Effect of surface properties on nanoparticle-cell interactions[J]. Small,2010,6(1):12-21. [17] LIU H,ZHANG J,CHEN X,et al. Application of iron oxide nanoparticles in glioma imaging and therapy:from bench to bedside[J]. Nanoscale,2016,8(15):7808-7826. [18] GAHARWAR U S,PAULRAJ R. Iron oxide nanoparticles induced oxidative damage in peripheral blood cells of rat[J]. J Biomed Sci Eng,2015,08(4):274-286. [19] NEMMAR A,BEEGAM S,YUVARAJU P,et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice[J]. Part Fibre Toxicol,2015,13(1):22. doi:10.1186/s12989-016-0132-x. [20] ALARIFI S,ALI D,ALKAHTANI S,et al. Iron oxide nanoparticles induce oxidative stress,DNA damage,and caspase activation in the human breast cancer cell line[J]. Biol Trace Elem Res,2014,159(1/2/3):416-424. [21] ZHANG X,ZHANG H,LIANG X,et al. Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms:Lysosome Impairment,Mitochondrial Damage,and ER Stress[J]. Mol Pharm,2016,13(7):2578-2587. [22] LI X,XU L,SHAO A,et al. Cytotoxic and genotoxic effects of silver nanoparticles on primary Syrian hamster embryo (SHE) cells[J]. J Nanosci Nanotechnol,2013,13(1):161-170. [23] HUANG D M,HSIAO J K,CHEN Y C,et al. The promotion of human mesenchymal stem cell proliferation by super-paramagnetic iron oxide nanoparticles[J]. Biomaterials,2009,30(22):3645-3651. [24] XU F,PIETT C,FARKAS S,et al. Silver nanoparticles (AgNPs) cause degeneration of cytoskeleton and disrupt synaptic machinery of cultured cortical neurons[J]. Mol Brain,2013,6(1):1-15. [25] ZELJEZIC D,BJELIS M,MLADINIC M. Evaluation of the mechanism of nucleoplasmic bridge formation due to premature telomere shortening in agricultural workers exposed to mixed pesticides:Indication for further studies[J]. Chemosphere,2015,120(2):45-51. |