[1] SORONEN J,YKI-JÄRVINEN H,ZHOU Y,et al. Novel hepatic microRNAs upregulated in human nonalcoholic fatty liver disease[J]. Physiol Rep,2016,4(1):e12661. [2] OTSUKA M, KISHIKAWA T, YOSHIKAWA T, et al. MicroRNAs and liver disease[J]. J Hum Genet,2017,62(1):75-80. [3] PEREIRA-DA-SLIVA T, COUTINHO CRUZ M, CARRUSCA C, et al. Circulating microRNA profiles in different arterial territories of stable atherosclerotic disease:a systematic review[J]. Am J Cardiovasc Dis,2018,8(1):1-3. [4] KERR T A, KORENBLAT K M, DAVIDSON N O. MicroRNAs and liver disease[J]. Transl Res,2011,157(4):241-252. [5] BAFFY G. MicroRNAs in nonalcoholic fatty liver disease[J]. J Clin Med,2015,4(12):1977-1988. [6] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence,incidence,and outcomes[J]. Hepatology,2016,64(1):73-84. [7] GAQQINI M, MORELLI M, BUZZIQOLI E, et al. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance,dyslipidemia,atherosclerosis and coronary heart disease[J]. Nutrients,2013,5(5):1544-1560. [8] ALAM S,MUSTAFA G,ALAM M,et al. Insulin resistance in development and progression of nonalcoholic fatty liver disease[J] World J Gastrointest Pathophysiol,2016,7(2):211-217. [9] GORI M, ARCIELLO M, BALSANO C. MicroRNAs in nonalcoholic fatty liver disease:novel biomarkers and prognostic tools during the transition from steatosis to hepatocarcinoma[J]. Biomed Res Int,2014,2014:741465. [10] YAMAKUCHI M,FERLITO M,LOWENSTEIN C J. MiR-34a repression of SIRT1 regulates apoptosis[J]. Proc Natl Acad Sci USA,2008,105(36):13421-13426. [11] NASSIR F,IBDAH J A. Sirtuins and nonalcoholic fatty liver disease[J]. World J Gastroenterol, 2016, 22(46):10084-10092. [12] AMACHER D E. Progress in the search for circulating biomarkers of nonalcoholic fatty liver disease[J]. Biomarkers, 2014,19(7):541-552. [13] HUR W, LEE J H, KIN S W, et al. Downregulation of microRNA-451 in non-alcoholic steatohepatitis inhibits fatty acid-induced proinflammatory cytokine production through the AMPK/AKT pathway[J]. Int J Biochem Cell Biol,2015,64:265-276. [14] KIM H. The transcription cofactor CRTC1 protects from aberrant hepatic lipid accumulation[J]. Sci Rep,2016,6:37280. [15] GUO Y, XIONG Y, SHENG Q, et al. A micro-RNA expression signature for human NAFLD progression[J]. J Gastroenterol,2016,51(10):1022-1030. [16] SHAN W, GAO L, ZENG W, et al. Activation of the SIRT1/p66shc antiapoptosis pathway via carnosic acid-induced inhibition of miR-34a protects rats against nonalcoholic fatty liver disease[J]. Cell Death Dis,2015,6:e1833. [17] LEE J,PADHYE A,SHARMA A,et al. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition[J]. J Biolchem,2010,285(17):12604-12611. [18] TIAN X F,JI F J,ZANG H L,et al. Activation of the miR 34a/SIRT1/p53 signaling pathway contributes to the progress of liver fibrosis via inducing apoptosis in hepatocytes but not in HSCs[J]. PLoS One,2016,11(7):e0158657. [19] LI X, LIAN F, LIU C, et al. Isocaloric pair-fed high-carbohydrate diet induced more hepatic steatosis and inflammation than high-fat diet mediated by miR-34a/SIRT1 axis in mice[J]. Sci Rep,2015,5:16774. [20] PAWLAK M, LEFEBVRE P, STAELS B. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease[J]. J Hepatol,2015,62(3):720-733. [21] QIN S, YIN J, HUANG K. Free fatty acids increase intracellular lipid accumulation and oxidative stress by modulating PPARα and SREBP-1c in L-02 cells[J]. Lipids, 2016,51(7):797-805. [22] ZHANG Y,CUI Y,WANG X L,et al. PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats[J]. Cytokine,2015,75(1):127-135. |