[1] 张曦,金芬,钱永忠,等. 食品中矮壮素和缩节胺分析方法的研究进展[J]. 食品与发酵工业,2008,34(10):127-131. [2] European Food Safety. Review of the existing maximum residue levels for chlormequat according to Article 12 of Regulation[J]. EFSA J,2016,14(3):4422. [3] LI C,JIN F,YU Z,et al. Rapid determination of chlormequat in meat by dispersive solid-phase extraction and hydrophilic interaction liquid chromatography (HILIC)-electrospray tandem mass spectrometry[J]. J A Food Chem,2012,60(27):6816-6822. [4] HUANG D,WU S,HOU X,et al. The skeletal developmental toxicity of chlormequat chloride and its underlying mechanisms[J]. Toxicology,2017,381:1-9. [5] HADJIDAKIS D J,ANDROULAKIS I I. Bone remodeling[J]. Ann NY Acad Sci,2006,1092(1):385-396. [6] SUDO H,KODAMA H A,AMAGAI Y,et al. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria[J]. J Cell Biol,1983,96(1):191-198. [7] BECK G R,ZERLER B,MORAN E. Phosphate is a specific signal for induction of osteopontin gene expression[J]. P Natl Acad Sci USA,2000,97(15):8352-8357. [8] HU Z,PEEL S A,HO S K,et al. Role of bovine bone morphogenetic proteins in bone matrix protein and osteoblast-related gene expression during rat bone marrow stromal cell differentiation[J]. J Craniofacial Surg,2005,16(6):1006-1014. [9] HAUSCHKA P V,LIAN J B,COLE D E,et al. Osteocalcin and matrix Gla protein:vitamin K-dependent proteins in bone[J]. Physiol Rev,1989,69(3):990-1047. [10] CANALIS E. The fate of circulating osteoblasts[J]. New Engl J Med,2005,352(19):2014-2016. [11] ANDERSON D M,MARASKOVSKY E,BILLINGSLEY W L,et al. A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function[J]. Nature,1997,390(6656):175-179. [12] STOLINA M,SCHETT G,DWYER D,et al. RANKL inhibition by osteoprotegerin prevents bone loss without affecting local or systemic inflammation parameters in two rat arthritis models:comparison with anti-TNFα or anti-IL-1 therapies[J]. Arthritis Res Ther,2009,11(6):R187. [13] TIAN H,FAN Y B. Structure and mechanism of OPG & RANK & RANKL and their effect on bone diseases[J]. Prog Mod Biomed,2010,10(20):3963-3966. [14] FRANCESCHI R T,XIAO G. Regulation of the osteoblast-specific transcription factor,Runx2:responsiveness to multiple signal transduction pathways[J]. J Cell Biochem,2003,88(3):446-454. [15] FRANCESCHI R T,XIAO G. Regulation of the osteoblast-specific transcription factor,Runx2:responsiveness to multiple signal transduction pathways[J]. J Cell Biochem,2003,88(3):446-454. [16] GUICHEUX J,LEMONNIER J,GHAYOR C,et al. Activation of p38 mitogen-activated protein kinase and c-Jun-NH2-terminal kinase by BMP-2 and their implication in the stimulation of osteoblastic cell differentiation[J]. J Bone Mineral Res,2003,18(11):2060. [17] GE C,CAWTHORN W P,LI Y,et al. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARgamma transcription factors[J]. J Cell Physiol,2016,231(3):587-596. [18] GE C,XIAO G,JIANG D,et al. Identification and functional characterization of ERK/MAPK phosphorylation sites in the Runx2 transcription factor[J]. J Biol Chem,2009,284(47):32533-32543. [19] GREENBLATT M B,SHIM J H,GLIMCHER L H. Mitogen-activated protein kinase pathways in osteoblasts[J]. Annual Rev Cell Dev Biol,2013,29(1):63. [20] 李烨,刘文锋,刘如石,等. 丙二醛通过激活p38和JNK通路抑制间充质干细胞成骨分化[J]. 中国生物化学与分子生物学报,2012,28(9):804-810. [21] ZHANG G M. Ubiquitin ligase Smurf1 controls osteoblast activity and bone homeostasis by targeting MEKK2 for degradation[J]. Cell,2005,121(1):101-113. |