[1] LOREAL O,CAVEY T,BARDOU-JACQUET E,et al. Iron,hepcidin,and the metal connection[J]. Front Pharmacol, 2014,5:128. [2] LAWEN A,LANE D J. Mammalian iron homeostasis in health and disease:uptake,storage,transport,and molecular mecha-nisms of action[J]. Antioxid Redox Signal,2013, 18(18):2473-507. [3] FLEMING RE,PONKA P. Iron overload in human disease[J]. N Engl J Med,2012,366(4):348-359. [4] SIMCOX J A,MCCLAIN D A. Iron and diabetes risk[J]. Cell Metab,2013,17(3):329-41. [5] MILTO I V,SUHODOLO I V,PROKOPIEVA V D,et al. Molecular and cellular bases of iron metabolism in humans[J]. Biochemistry (Mosc),2016,81(6):549-564. [6] GHAMARCHEHREH M E,JONAIDI-JAFARI N,BIGDELI M,et al. Iron status and metabolic syndrome in patients with non-alcoholic fatty liver disease[J]. Middle East J Dig Dis, 2016,8(1):31-38. [7] BYRNE C D,TARGHER G. NAFLD:a multisystem disease[J]. J Hepatol,2015,62(Sup 1):47-64. [8] TARGHER G,CHONCHOL M B,BYRNE C D. CKD and nonalcoholic fatty liver disease[J]. Am J Kidney Dis,2014, 64(4):638-652. [9] NEUMAN M G,FRENCH S W,FRENCH B A,et al. Alcoholic and non-alcoholic steatohepatitis[J]. Exp Mol Pathol, 2014,97(3):492-510. [10] BECHMANN L P,HANNIVOORT R A,GERKEN G,et al. The interaction of hepatic lipid and glucose metabolism in liver diseases[J]. J Hepatol,2012,56(4):952-964. [11] CSAKI L S,REUE K. Lipins:multifunctional lipid metabolism proteins[J]. Annu Rev Nutr,2010,30:257-272. [12] BELLANTI F,VILLANI R,FACCIORUSSO A,et al. Lipid oxidation products in the pathogenesis of nonalcoholic steato-hepatitis[J]. Free Radic Biol Med,2017,11(18):891-895. [13] THOMAS C,MACKEY M M,DIAZ A A,et al. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress:implications for diseases associated with iron accumulation[J]. Redox Rep,2009, 14(3):102-108. [14] LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25(4):402-408. [15] SAFWAT G M,PISANO S,D'AMORE E,et al. Induction of non-alcoholic fatty liver disease and insulin resistance by feeding a high-fat diet in rats:does coenzyme Q monomethyl ether have a modulatory effect?[J]. Nutrition,2009,25(11/12):1157-1168. [16] TAN Y,SUN L Q,KAMAL M A,et al. Suppression of retinol-binding protein 4 with RNA oligonucleotide prevents high-fat diet-induced metabolic syndrome and non-alcoholic fatty liver disease in mice[J]. Biochim Biophys Acta,2011, 1811(12):1045-1053. [17] JUN D W,CHO W K,JUN J H,et al. Prevention of free fatty acid-induced hepatic lipotoxicity by carnitine via reversal of mitochondrial dysfunction[J]. Liver Int,2011,31(9):1315-1324. [18] FELDSTEIN A E. Novel insights into the pathophysiology of nonalcoholic fatty liver disease[J]. Semin Liver Dis,2010, 30(4):391-401. [19] NGUYEN P,LERAY V,DIEZ M,et al. Liver lipid metabolism[J]. J Anim Physiol Anim Nutr (Berl),2008, 92(3):272-283. [20] AMENGUAL J,PETROV P,BONET M L,et al. Induction of carnitine palmitoyl transferase 1 and fatty acid oxidation by retinoic acid in HepG2 cells[J]. Int J Biochem Cell Biol, 2012,44(11):2019-2027. [21] LIN X,SHIM K,ODLE J. Carnitine palmitoyltransferase I control of acetogenesis,the major pathway of fatty acid {beta}-oxidation in liver of neonatal swine[J]. Am J Physiol Regul Integr Comp Physiol,2010,298(5):1435-1443. |