[1] Siegel RL,Miller KD,Jemal A. Cancer statistics,2015[J]. CA Cancer J Clin,2015,65(1):5-29.[2] National Cancer Institute. SEER fact sheet for breast cancer[EB/OL].[2016-04-13]. http://seer.cancer.gov/statfacts/html/breast.html.[3] Liu ZJ,Semenza GL,Zhang HF. Hypoxia-inducible factor 1 and breast cancer metastasis[J]. J Zhejiang Univ Sci B,2015,16(1):32-43.[4] Pires IM,Bencokova Z,Milani M,et al. Effects of acute versus chronic hypoxia on DNA damage responses and genomic instability[J]. Cancer Res,2010,70(3):925-935.[5] He G,Jiang Y,Zhang B,et al. The effect of HIF-1α on glucose metabolism,growth and apoptosis of pancreatic cancerous cells[J]. Asia Pac J Clin Nutr,2014,23(1):174-180.[6] Tsai YP,Wu K J. Hypoxia-regulated target genes implicated in tumor metastasis[J]. J Biomed Sci,2012,19(1):1-7.[7] Lei J,Fan L,Wei G,et al. Gli-1 is crucial for hypoxia-induced epithelial-mesenchymal transition and invasion of breast cancer[J]. Tumour Biol,2015,36(4):3119-3126.[8] Verduzco D,Lloyd M,Xu L,et al. Intermittent hypoxia selects for genotypes and phenotypes that increase survival, invasion and therapy resistance[J]. PLoS One,2015,10(3): e120958.[9] Miao ZF,Zhao TT,Wang ZN,et al. Influence of different hypoxia models on metastatic potential of SGC-7901 gastric cancer cells[J]. Tumour Biol,2014,35(7):6801-6808.[10] Liu Y,Song X,Wang X,et al. Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells[J]. J Cell Biochem,2010, 111(3):554-563.[11] Shi J,Wan Y,Di W. Effect of hypoxia and re-oxygenation on cell invasion and adhesion in human ovarian carcinoma cells[J]. Oncol Rep,2008,20(4):803-807.[12] Zepeda AB,Pessoa AJ,Castillo RL,et al. Cellular and molecular mechanisms in the hypoxic tissue:role of HIF-1 and ROS[J]. Cell Biochem Funct,2013,31(6):451-459.[13] Toffoli S,Roegiers A,Feron O,et al. Intermittent hypoxia is an angiogenic inducer for endothelial cells:role of HIF-1[J]. Angiogenesis,2009,12(1):47-67.[14] Bhaskara VK,Mohanam I,Rao JS,et al. Intermittent hypoxia regulates stem-like characteristics and differentiation of neuroblastoma cells[J]. PLoS One,2012,7(2):e30905.[15] Yang B,Huang J,Xiang T,et al. Chrysin inhibits metastatic potential of human triple-negative breast cancer cells by modulating matrix metalloproteinase-10,epithelial to mesenchymal transition,and PI3K/Akt signaling pathway[J]. J Appl Toxicol, 2014,34(1):105-112.[16] Wang W,He YF,Sun QK,et al. Hypoxia-inducible factor 1α in breast cancer prognosis[J]. Clin Chim Acta,2014,428:32-37.[17] Toffoli S,Feron O,Raes M,et al. Intermittent hypoxia changes HIF-1α phosphorylation pattern in endothelial cells: unravelling of a new PKA-dependent regulation of HIF-1αlpha[J]. Biochim Biophys Acta,2007,1773(10):1558-1571.[18] Guoxiang Y,Jayasri N,C Raman B,et al. Ca2+/calmodulin kinase-dependent activation of hypoxia inducible factor 1 transcriptional activity in cells subjected to intermittent hypoxia[J]. J Biol Chem,2005,280(6):4321-4328.[19] Mottet D,Dumont V,Deccache Y,et al. Regulation of hypoxia-inducible factor-1 protein level during hypoxic conditions by the phosphatidylinositol 3-kinase/Akt/glycogen synthase kinase 3 pathway in HepG2 cells[J]. J Biol Chem,2003,278(33): 31277-85.[20] Moeller BJ,Cao Y,Li CY,et al. Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors:role of reoxygenation, free radicals,and stress granules[J]. Cancer Cell,2004, 5(5):429-441.[21] Almendros I,Wang Y,Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia[J]. Am J Physiol Lung Cell Mol Physiol,2014,307(2):129-140.[22] Louie E,Nik S,Chen JS,et al. Identification of a stem-like cell population by exposing metastatic breast cancer cell lines to repetitive cycles of hypoxia and reoxygenation[J]. Breast Cancer Res,2010,12(6):1-14.[23] Dave JM,Bayless KJ. Vimentin as an integral regulator of cell adhesion and endothelial sprouting[J]. Microcirculation,2014, 21(4):333-344. |