[1] Nelson DI,Nelson RY,Concha-Barrientos M,et al. The global burden of occupational noise-induced hearing loss[J]. Am J Ind Med,2005,48(6):446-458. [2] Sliwinska-Kowalska M,Davis A. Noise-induced hearing loss[J]. Noise & Health,2012,14(61):274-180. [3] 曲腾飞,龚树生. 噪声性聋致病机制及其防护研究[J]. 国际耳鼻咽喉头颈外科杂志,2013,37(006):318-320. [4] 王秋菊,Mohamed A. 耳内科疾病相关基础研究与诊治新进展:上篇[J]. 中华耳科学杂志,2012,10(2):201-207. [5] Wangemann P. K+ cycling and the endocochlear potential[J]. Hear Res,2002,165:1-9. [6] Kubisch C,Schroeder BC,Friedrich T,et al. KCNQ4,a novel potassium channel expressed in sensory outer hair cells,is mutated in dominant deafness[J]. Cell,1999,96(3): 437-446. [7] Kharkovets T,Harderlin JP,Safieddine S,et al. KCNQ4,a K+ channel mutated in a form of dominant deafness,is expressed in the inner ear and the central auditory pathway[J]. Proc Natl Acad Sci USA,2000,97(8):4333-4338. [8] Naito T,Nishio SY,Iwasa Y,et al. Comprehensive genetic screening of KCNQ4 in a large autosomal dominant nonsyndromic hearing loss cohort:genotype-phenotype correlations and a founder mutation[J]. PLoS One,2013,8(5):e63231. [9] Nie L. KCNQ4 mutations associated with nonsyndromic progressive sensorineural hearing loss[J]. Curr Opin Otolaryngol Head Neck Surg,2008,16(5):441-444. [10] Van Laer L,Carlsson PI,Ottschytsch N,et al. The contribution of genes involved in potassium-recycling in the inner ear to noise-induced hearing loss[J]. Hum Muta,2006, 27:786-795. [11] Pawelczyk M,Van Laer L,Fransen E,et al. Analysis of gene polymorphisms associated with K on circulation in the inner ear of patients susceptible and resistant to noise-induced hearing loss[J]. Ann Hum Genet,2009,73(4):411-421. [12] Kikuchi T,Adams JC,Miyabe Y,et al. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness[J]. Med Electron Microsc,2000,33(2),51-56. [13] Zhao,HB,Kikuchi T,Ngezahayo A,et al. Gap junctions and cochlear Homeostasis[J]. J Mem Biol,2006,209(2/3), 177-186. [14] Richard G,White TW,Smith LE,et al. Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma[J]. Hum Genet,1998,103(4):393-399. [15] Grifa A,Wagner CA,D'Ambrosio L,et al. Mutations in GJB6 cause nonsyndromic autosomal dominant deafness at DFNA3 locus[J]. Nat Genet,1999,23(1):16-18. [16] Zelante L,Gasparini P,Estivill X,et al. Connexin26 mutations associated with the most common form of nonsyndromic neurosensory autosomal recessive deafness (DFNB1) in Mediterraneans[J]. Hum Mol Genet,1997,6(9): 1605-1609. [17] Sliwinska-Kowalska M,Pawelczyk M. Contribution of genetic factors to noise-induced hearing loss:a human studies review[J]. Mutat Res,2013,752(1):61-65. [18] Kokotas H,Van Laer L,Grigoriadou M,et al. Strong linkage disequilibrium for the frequent GJB2 35delG mutation in the Greek population[J]. Am J Med Genet,2008,146(22):2879-2884. [19] Grillo AP,de Oliveira FM,de Carvalho GQ,et al. Single nucleotide polymorphisms of the GJB2 and GJB6 genes are associated with autosomal recessive nonsyndromic hearing loss[J]. Biomed Res Int,2015. doi:10.1155/2015/318727. [20] Grzybowska EA,Wilczynska A,Siedlecki JA. Regulatory functions of 3'-UTRs[J]. Biochem Bioph Res Co,2001, 288(2):291-295. [21] Matos TD,Simões-Teixeira H,Caria H,et al. Assessing noncoding sequence variants of GJB2 for hearing loss association [J]. Genet Res Int,2011. doi:10.4061/2011/827469. |